Visual outcomes of epiretinal membrane removal after diffractive-type multifocal intraocular lens implantation

Retrospective chart reviews were done, aimed at patients with diffractive-type MIOL implants undergoing successful pars plana vitrectomy (PPV) and ERM removal procedures between February 2018 and November 2020 at Gyeongju St. Mary's Eye Clinic and KEYE Eye Center. Subjects who were followed for more than 12 months were included in the study. Exclusion criteria included retinal disorders other than ERM (ie, age-related macular degeneration, diabetic retinopathy, and retinal vascular occlusions), ocular trauma and prior history of any refractive or vitreoretinal surgery. This study was approved by the Institutional Review Board/Ethics Committee of KEYE Eye Center (IRB number 20200828–001). Our protocol adhered to tenets of the Declaration of Helsinki. To increase the efficiency of the study, we randomly selected an “age-matched control group” by “individual matching,” among patients with a history of diffractive-type MIOL implantation but no ERM.

The presence and severity of ERM was determined retrospectively by spectral domain optical coherence tomography (Spectralis SD-OCT; Heidelberg Engineering, Heidelberg, Germany), based on a past study. ERM categorization was as follows: Stage 1, no anatomic distortion and preserved foveal depression; Stage 2, loss of foveal depression, but well-defined retinal layers overall (Fig. 1A); Stage 3, continuous inner nuclear (INL) and inner plexiform (IPL) layers, obscuring the fovea (Fig. 1B); and Stage 4, disruption of all retinal layers [11]. Ectopic inner foveal layer (EIFL) thickness was measured using caliper tool as the distance between inner border of outer nuclear layer (ONL) and internal limiting membrane (ILM) at foveal center by an experienced retinal specialist (S.J.) who was masked to the patient identity.

Fig. 1figure 1

Representative images of ectopic inner foveal layers (EIFLs) at stages of epiretinal membrane (ERM) development: A Stage 2, loss of foveal depression but well-defined retinal layers overall; and B Stage 3, continuous inner nuclear (INL) and inner plexiform (IPL) layers obscuring the fovea. Yellow line indicates the thickness of EIFL

Monocular uncorrected and corrected values of distant visual acuity (UDVA and CDVA) and uncorrected near visual acuity (UNVA) were measured in decimal system, converting values to logMAR units for statistical analysis. To assess visual quality, we used two instruments (CGT-2000 [Takagi Seiko, Tokyo, Japan] and OPD-Scan III [NIDEK Co Ltd, Aichi, Japan]) to test CS at postoperative Month 12. The ocular root mean square (RMS) of higher-order aberrations (HOAs), the Strehl ratio of point spread function (PSF), and the modulation transfer function (MTF) from postoperative RMS of total ocular wave aberration Z (1 ≤ n ≤ 8) were assessed at a 5.0-mm pupil diameter. MTF was analyzed by area ratio method.

Ocular biometric findings (ie, axial length and keratometric values) were recorded by partial coherence interferometry device (IOLMaster 700; Carl Zeiss Meditec, Jena, Germany), and corneal topography (Pentacam Scheimpflug System; Oculus Inc, Wetzlar, Germany) was mapped before cataract surgery, subject to availability.

Surgical technique

Two experienced vitreoretinal surgeons (HK and SJ) performed all operations, using a 25-gauge standard sutureless pars plana vitrectomy system (Alcon Laboratories, Geneva, Switzerland). The NGENUITY 3D Visualization System (Alcon Laboratories) was used at the KEYE Eye Center. Subtenon anesthesia (lidocaine) was applied prior to surgery. The trocar was placed ~ 3.5 mm posterior to limbus in three quadrants: superotemporal, inferotemporal, and superonasal. Once core vitrectomy was achieved (as needed), the posterior hyaloid membrane was detached by utilizing the vitrectomy probe in suction mode around optic nerve disc. Peripheral vitreous shaving was then conducted under great scrutiny, moving clockwise at hourly positions. The ERM was peeled away by intraocular forceps coated with triamcinolone (MaQaid; Hanmi Pharmaceutical Co Ltd, Seoul, Korea). ILM was removed at the discretion of the surgeon, either concurrently or after ERM removal within a fovea-centered circular area of 2–3 optic disc diameters using 0.5% indocyanine green (ICG) dye (Dongindang Inc., Seoul, Korea). The FINESSE Flex Loop (Alcon Laboratories) was engaged if iatrogenic retinal damage was suspected after ERM or ILM manipulation, owing to blurred surgical field. Finally, the periphery was closely inspected to ensure its integrity (absence of retinal holes or tears). No intraocular tamponade was used in these cases. There were no periocular injections of antibiotics or steroids. Postoperatively, topical moxifloxacin 5 mg/mL (Vigamox; Novartis AG, Basel, Switzerland) and prednisone acetate 1% (Pred Forte; Allergan TechAlliance, Dublin, Ireland) were applied four times daily for 4 weeks.

Statistical analysis

All computations were driven by standard software (SPSS v15.0 for Windows; SPSS Inc, Chicago, IL, USA). Descriptive data were expressed as mean ± standard deviation values, unless otherwise specified. The Shapiro–Wilk test served to assess normality of continuous variables, using analysis of variance (ANOVA) to compare three or more data points and invoking Bonferroni test for post-hoc analysis. The comparisons of paired variables were calculated with Wilcoxon signed test and the comparisons of non-paired variables were calculated with Mann–Whitney test. All p values were two-sided, setting significance at < 0.05. The minimum sample size of 9 eyes for each group was calculated by G*Power3 software (Dusseldorf, Germany) with a significance level (α) of 0.05, power of 0.90, effect size of 1.256 which was calculated based on our preliminary data for comparison of CDVA at baseline and postoperative 12 month.

留言 (0)

沒有登入
gif