Glycerosomal thermosensitive in situ gel of duloxetine HCl as a novel nanoplatform for rectal delivery: in vitro optimization and in vivo appraisal

Koponen H, et al. Efficacy of duloxetine for the treatment of generalized anxiety disorder: implications for primary care physicians. Primary care companion to the Journal of clinical psychiatry. 2007;9(2):100.

Article  PubMed  PubMed Central  Google Scholar 

Lunn MP, Hughes RA, Wiffen PJ. Duloxetine for treating painful neuropathy, chronic pain or fibromyalgia. Cochrane Database of Systematic Revi. 2014;(1).

Bymaster FP, et al. Comparative affinity of duloxetine and venlafaxine for serotonin and norepinephrine transporters in vitro and in vivo, human serotonin receptor subtypes, and other neuronal receptors. Neuropsychopharmacology. 2001;25(6):871–80.

Article  CAS  PubMed  Google Scholar 

Sharma A, Goldberg MJ, Cerimele BJ. Pharmacokinetics and safety of duloxetine, a dual-serotonin and norepinephrine reuptake inhibitor. J Clin Pharmacol. 2000;40(2):161–7.

Article  CAS  PubMed  Google Scholar 

Turcotte JE, et al. Assessment of the serotonin and norepinephrine reuptake blocking properties of duloxetine in healthy subjects. Neuropsychopharmacology. 2001;24(5):511–21.

Article  CAS  PubMed  Google Scholar 

Patel K, Padhye S, Nagarsenker M. Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design. AAPS PharmSciTech. 2012;13(1):125–33.

Article  PubMed  Google Scholar 

Ganesh M, et al. Development of duloxetine hydrochloride loaded mesoporous silica nanoparticles: characterizations and in vitro evaluation. AAPS PharmSciTech. 2015;16(4):944–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jannin V, et al. Rectal route in the 21st Century to treat children. Adv Drug Deliv Rev. 2014;73:34–49.

Article  CAS  PubMed  Google Scholar 

El-Leithy ES, et al. Evaluation of mucoadhesive hydrogels loaded with diclofenac sodium–chitosan microspheres for rectal administration. AAPS PharmSciTech. 2010;11(4):1695–702.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Kamel A, El-Khatib M. Thermally reversible in-situ gelling carbamazepine liquid suppository. Drug Delivery. 2006;13(2):143–8.

Article  CAS  PubMed  Google Scholar 

Huang C, et al. Formulation of double-layered suppository for prolonged stay in lower rectum. Yakuzaigaku. 1987;47(1):42–8.

CAS  Google Scholar 

Özgüney I, et al. In vitro–in vivo evaluation of in-situ gelling and thermosensitive ketoprofen liquid suppositories. Eur J Drug Metab Pharmacokinet. 2014;39(4):283–91.

Article  PubMed  Google Scholar 

Choi H-G, et al. Development of in-situ-gelling and mucoadhesive acetaminophen liquid suppository. Int J Pharm. 1998;165(1):33–44.

Article  CAS  Google Scholar 

Moawad FA, Ali AA, Salem HF. Nanotransfersomes-loaded thermosensitive in-situ gel as a rectal delivery system of tizanidine HCl: preparation, in vitro and in vivo performance. Drug Delivery. 2017;24(1):252–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyazaki S, et al. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J Control Release. 1998;56(1–3):75–83.

Article  CAS  PubMed  Google Scholar 

Yeo WH, et al. Docetaxel-loaded thermosensitive liquid suppository: optimization of rheological properties. Arch Pharmacal Res. 2013;36(12):1480–6.

Article  CAS  Google Scholar 

Jain S, Jain V, Mahajan SC. Lipid Based Vesicular Drug Delivery Systems. Advances in Pharmaceutics. 2014;2014: 574673.

Article  Google Scholar 

Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomed. 2015;10:975.

Article  CAS  Google Scholar 

Ashtikar M, Nagarsekar K, Fahr A. Transdermal delivery from liposomal formulations–Evolution of the technology over the last three decades. J Control Release. 2016;242:126–40.

Article  CAS  PubMed  Google Scholar 

Romero EL, Morilla MJ. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int J Nanomed. 2013;8:3171.

Article  Google Scholar 

Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1992;1104(1):226-232.

Touitou E, et al. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–18.

Article  CAS  PubMed  Google Scholar 

Din FU, et al. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. European j pharmaceutics and biopharmaceutics. 2015;94:64–72.

Ahmed OA, Badr-Eldin SM. Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation. Int J Pharm. 2019;570: 118657.

Article  CAS  PubMed  Google Scholar 

Salama HA, et al. Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J Liposome Res. 2012;22(4):336–45.

Article  CAS  PubMed  Google Scholar 

Ascenso A, et al. Development, characterization, and skin delivery studies of related ultradeformable vesicles: transfersomes, ethosomes, and transethosomes. Int J Nanomed. 2015;10:5837.

Article  CAS  Google Scholar 

Manca ML, et al. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles. Colloids Surf, B. 2014;123:566–74.

Article  CAS  Google Scholar 

Salem HF, et al. Formulation Design and Optimization of Novel Soft Glycerosomes for Enhanced Topical Delivery of Celecoxib and Cupferron by Box-Behnken Statistical Design. Drug dev industrial pharmacy. 2018(just-accepted);1–34.

Manca ML, et al. Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration. Int J Pharm. 2016;511(1):198–204.

Article  CAS  PubMed  Google Scholar 

Naguib MJ, et al. Investigating the potential of utilizing glycerosomes as a novel vesicular platform for enhancing intranasal delivery of lacidipine. Int J Pharm. 2020;582: 119302.

Article  CAS  PubMed  Google Scholar 

Melis V, et al. Inhalable polymer-glycerosomes as safe and effective carriers for rifampicin delivery to the lungs. Colloids Surf, B. 2016;143:301–8.

Article  CAS  Google Scholar 

Elsenosy FM, et al. Brain Targeting of Duloxetine HCL via Intranasal Delivery of Loaded Cubosomal Gel: In vitro Characterization, ex vivo Permeation, and in vivo Biodistribution Studies. Int J Nanomed. 2020;15:9517.

Article  CAS  Google Scholar 

khatoon M, et al. Development and Evaluation of Optimized Thiolated Chitosan Proniosomal Gel Containing Duloxetine for Intranasal Delivery. AAPS PharmSciTech, 2019;20(7):288.

Castangia I, et al. Effect of diclofenac and glycol intercalation on structural assembly of phospholipid lamellar vesicles. Int J Pharm. 2013;456(1):1–9.

Article  CAS  PubMed  Google Scholar 

Manca ML, et al. Glycerosomes: investigation of role of 1, 2-dimyristoyl-sn-glycero-3-phosphatidycholine (DMPC) on the assembling and skin delivery performances. Int J Pharm. 2017;532(1):401–7.

Article  CAS  PubMed  Google Scholar 

Salem HF, et al. Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer. Drug Deliv Transl Res. 2018;8(3):633–44.

Article  CAS  PubMed  Google Scholar 

Aboud HM, et al. Novel in-situ gelling vaginal sponges of sildenafil citrate-based cubosomes for uterine targeting. Drug Delivery. 2018;25(1):1328–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salem HF, et al. A novel transdermal nanoethosomal gel of lercanidipine HCl for treatment of hypertension: optimization using Box-Benkhen design, in vitro and in vivo characterization. Drug Deliv Transl Res. 2020;10(1):227–40.

Article  PubMed  Google Scholar 

Hosny KM, et al. Nanovesicular systems loaded with a recently approved second generation type-5 phospodiesterase inhibitor (avanafil): I. Plackett-Burman screening and characterization. J Drug Deliv Sci Technol. 2018;43:154–159.

Aboud HM, et al. Nanotransfersomes of carvedilol for intranasal delivery: formulation, characterization and in vivo evaluation. Drug Delivery. 2016;23(7):2471–81.

Article  CAS  PubMed  Google Scholar 

Nasr M, et al. Vesicular aceclofenac systems: a comparative study between liposomes and niosomes. J Microencapsul. 2008;25(7):499–512.

Article  CAS  PubMed  Google Scholar 

Schmolka IR. Artificial skin I. Preparation and properties of pluronic F‐127 gels for treatment of burns. J biomed maters res. 1972;6(6):571–582.

Mansour M, et al. Ocular poloxamer-based ciprofloxacin hydrochloride in-situ forming gels. Drug Dev Ind Pharm. 2008;34(7):744–52.

Article  CAS  PubMed  Google Scholar 

Yadav DJ, Kunjwani HK, Suryawanshi SS. Formulation and evaluation of thermosensitive in-situ gel of salbutamol sulphate for nasal drug delivery system. Int J Pharm Pharm Sci. 2012;4(4):188–94.

CAS  Google Scholar 

Singh RM, Kumar A, Pathak K. Thermally triggered mucoadhesive in-situ gel of loratadine: β-cyclodextrin complex for nasal delivery. AAPS PharmSciTech. 2013;14(1):412–24.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif