Enhancing the function of PLGA-collagen scaffold by incorporating TGF-β1-loaded PLGA-PEG-PLGA nanoparticles for cartilage tissue engineering using human dental pulp stem cells

Elisseeff J. Injectable cartilage tissue engineering. Expert Opin Biol Ther. 2004;4(12):1849–59.

Article  CAS  PubMed  Google Scholar 

Kalamegam G, et al. A comprehensive review of stem cells for cartilage regeneration in osteoarthritis. 2018.

Iturriaga L, et al. Advances in stem cell therapy for cartilage regeneration in osteoarthritis. Expert Opin Biol Ther. 2018;18(8):883–96.

Article  CAS  PubMed  Google Scholar 

Amini AA, Nair LS. Injectable hydrogels for bone and cartilage repair. Biomed Mater. 2012;7(2): p. 024105.

Munir N, Callanan A. Novel phase separated polycaprolactone/collagen scaffolds for cartilage tissue engineering. Biomed Mater. 2018;13(5): p. 051001.

Mistry H, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. 2017.

Demoor M, et al. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochimica et Biophysica Acta (BBA) - General Subjects. 2014;1840(8): p. 2414–2440.

Mansour JM. Biomechanics of cartilage. Kinesiology: the mechanics and pathomechanics of human movement. 2003;p. 66–79.

Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6): p. 461–468.

Fernandes TL, et al. Systematic review of human dental pulp stem cells for cartilage regeneration. Tissue Eng Part B Rev. 2020;26(1):1–12.

Article  PubMed  Google Scholar 

Li P-L, et al. Clinical-grade human dental pulp stem cells suppressed the activation of osteoarthritic macrophages and attenuated cartilaginous damage in a rabbit osteoarthritis model. Stem Cell Res Ther. 2021;12(1):1–15.

Article  Google Scholar 

Hokmabad VR, et al. A comparison of the effects of silica and hydroxyapatite nanoparticles on poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone)/chitosan nanofibrous scaffolds for bone tissue engineering. Tissue Engineering and Regenerative Medicine. 2018;15(6):735–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aghazadeh M, et al. The effect of melanocyte stimulating hormone and hydroxyapatite on osteogenesis in pulp stem cells of human teeth transferred into polyester scaffolds. Fibers and Polymers. 2018;19(11):2245–53.

Article  CAS  Google Scholar 

Cristaldi M, et al. Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future. Regen Med. 2018;13(2):207–18.

Article  Google Scholar 

Williams DF, et al. Chapter 36 - hydrogels in regenerative medicine. In: Atala A, et al., editors. Principles of Regenerative Medicine (Third Edition). Boston: Academic Press; 2019. p. 627–50.

Chapter  Google Scholar 

Yegappan R, et al. Injectable angiogenic and osteogenic carrageenan nanocomposite hydrogel for bone tissue engineering. Int J Biol Macromol. 2019;122:320–8.

Article  CAS  PubMed  Google Scholar 

Vega SL, Kwon MY, Burdick JA. Recent advances in hydrogels for cartilage tissue engineering. Eur Cell Mater. 2017;33:59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther. 2016;7(1):56.

Article  PubMed  PubMed Central  Google Scholar 

Elango J, et al. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering. Int J Biol Macromol. 2016;91:51–9.

Article  CAS  PubMed  Google Scholar 

Lee HJ. Hybrid hydrogels for tissue engineering. 2015.

Wang J, et al. Silk fibroin/collagen/hyaluronic acid scaffold incorporating pilose antler polypeptides microspheres for cartilage tissue engineering. Mater Sci Eng, C. 2019;94:35–44.

Article  CAS  Google Scholar 

Chicatun F, et al. Collagen/chitosan composite scaffolds for bone and cartilage tissue engineering. In: Biomedical Composites. Elsevier; 2017. p. 163–98.

Chapter  Google Scholar 

Quinlan E, et al. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials. 2015;52:358–66.

Article  CAS  PubMed  Google Scholar 

Raeisdasteh Hokmabad V, et al. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed. 2017;28(16):1797–825.

Article  CAS  PubMed  Google Scholar 

Khorshid NK, et al. Novel structural changes during temperature-induced self-assembling and gelation of PLGA-PEG-PLGA triblock copolymer in aqueous solutions. Macromol Biosci. 2016;16(12):1838–52.

Article  CAS  PubMed  Google Scholar 

Chen G, Kawazoe N. Porous scaffolds for regeneration of cartilage, bone and osteochondral tissue. Osteochondral Tissue Engineering: Nanotechnology, Scaffolding-Related Developments and Translation. 2018; p. 171–191.

Witwer KW, Wolfram J. Extracellular vesicles versus synthetic nanoparticles for drug delivery. Nat Rev Mater. 2021;6(2):103–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16(7):748–59.

Article  CAS  PubMed  Google Scholar 

Alcaraz MJ, Compañ A, Guillén MI. Extracellular vesicles from mesenchymal stem cells as novel treatments for musculoskeletal diseases. Cells. 2020;9(1):98.

Article  CAS  Google Scholar 

Jin Q, et al. Extracellular vesicles derived from human dental pulp stem cells promote osteogenesis of adipose-derived stem cells via the MAPK pathway. Journal of tissue engineering. 2020;11:2041731420975569.

Article  PubMed  PubMed Central  Google Scholar 

Della Porta G, Ciardulli MC, Maffulli N. Microcapsule technology for controlled growth factor release in musculoskeletal tissue engineering. Sports medicine and arthroscopy review. 2018;26(2): p. e2-e9.

Awad HA, et al. Effects of transforming growth factor β 1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 2003;9(6):1301–12.

Article  CAS  PubMed  Google Scholar 

Na K, et al. Delivery of dexamethasone, ascorbate, and growth factor (TGF β-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes. Biomaterials. 2006;27(35):5951–7.

Article  CAS  PubMed  Google Scholar 

Kowalczewski CJ, Saul JM. Biomaterials for the delivery of growth factors and other therapeutic agents in tissue engineering approaches to bone regeneration. Front Pharmacol. 2018;9:513.

Article  PubMed  PubMed Central  Google Scholar 

Askari M, et al. Sustained release of TGF-β1 via genetically-modified cells induces the chondrogenic differentiation of mesenchymal stem cells encapsulated in alginate sulfate hydrogels. J Mater Sci - Mater Med. 2019;30(1):7.

Article  Google Scholar 

Levinson C, et al. An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis. Acta Biomater. 2019;99:168–80.

Article  CAS  PubMed  Google Scholar 

Böck T, et al. TGF-β1-modified hyaluronic acid/poly (glycidol) hydrogels for chondrogenic differentiation of human mesenchymal stromal cells. Macromol Biosci. 2018;18(7):1700390.

Article  Google Scholar 

Fernandes TL, et al. Macrophage: a potential target on cartilage regeneration. Front Immunol. 2020;11:111.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Modaresifar K, Hadjizadeh A, Niknejad H. Design and fabrication of GelMA/chitosan nanoparticles composite hydrogel for angiogenic growth factor delivery. Artificial cells, nanomedicine, and biotechnology. 2018;46(8):1799–808.

CAS  PubMed  Google Scholar 

Begines B, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials. 2020;10(7):1403.

Article  CAS  PubMed Central  Google Scholar 

Oliveira ÉR, et al. Advances in growth factor delivery for bone tissue engineering. Int J Mol Sci. 2021;22(2):903.

Article  CAS  PubMed Central  Google Scholar 

Wang J, et al. Double-layered collagen/silk fibroin composite scaffold that incorporates TGF-β1 nanoparticles for cartilage tissue engineering. J Biomater Tissue Eng. 2015;5(5):357–63.

Article  Google Scholar 

Li Y, Liu Y, Guo Q. Silk fibroin hydrogel scaffolds incorporated with chitosan nanoparticles repair articular cartilage defects by regulating TGF-β1 and BMP-2. Arthritis Res Ther. 2021;23(1):1–11.

Article  Google Scholar 

Rong X, et al. Neuroprotective effect of insulin-loaded chitosan nanoparticles/PLGA-PEG-PLGA hydrogel on diabetic retinopathy in rats. Int J Nanomed. 2019;14:45.

Article  CAS  Google Scholar 

Pan J, et al. Thermosensitive hydrogel delivery of human periodontal stem cells overexpressing platelet-derived growth factor-BB enhances alveolar bone defect repair. Stem cells and development. 2019;28(24):1620–31.

Article  CAS  PubMed  Google Scholar 

Lamparelli EP, et al. Chondrogenic commitment of human bone marrow mesenchymal stem cells in a perfused collagen hydrogel functionalized with hTGF-β1-releasing PLGA microcarrier. Pharmaceutics. 2021;13(3):399.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirby GT, et al. Microparticles for sustained growth factor delivery in the regeneration of critically-sized segmental tibial bone defects. Materials. 2016;9(4):259.

Article  PubMed Central  Google Scholar 

Ghandforoushan P, et al. Novel nanocomposite scaffold based on Gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro. Int J Biol Macromol. 2022.

Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. In: Williams DF, editor. The Biomaterials: Silver Jubilee Compendium. Oxford: Elsevier Science; 2000. p. 175–89.

Chapter  Google Scholar

留言 (0)

沒有登入
gif