Amalgamation of solid dispersion and melt adsorption techniques for augmentation of oral bioavailability of novel anticoagulant rivaroxaban

Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical Pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53(1):1–16.

Article  CAS  PubMed  Google Scholar 

Abouhussein DMN, Bahaa El Din Mahmoud D, Mohammad FE. Design of a liquid nano-sized drug delivery system with enhanced solubility of rivaroxaban for venous thromboembolism management in paediatric patients and emergency cases. J Liposome Res. 2019;29(4):399–412.

Xue X, Cao M, Ren L, Qian Y, Chen G. Preparation and optimization of rivaroxaban by self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability and no food effect. AAPS PharmSciTech. 2018;19(4):1847–59.

Article  CAS  PubMed  Google Scholar 

Anwer MK, Mohammad M, Iqbal M, Ansari MN, Ezzeldin E, Fatima F, et al. Sustained release and enhanced oral bioavailability of rivaroxaban by PLGA nanoparticles with no food effect. J Thromb Thrombolysis. 2020;49(3):404–12.

Article  CAS  PubMed  Google Scholar 

Zhang X, Xing H, Zhao Y, Ma Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics. 2018;10(3). https://doi.org/10.3390/pharmaceutics10030074.

Sree Harsha N, Hiremath JG, Sarudkar S, Attimarad M, Al-Dhubiab B, Nair AB, et al. Spray dried amorphous form of simvastatin: preparation and evaluation of the buccal tablet. Indian Journal of Pharmaceutical Education and Research. 2020;54:46–54.

Article  Google Scholar 

Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomaterials research. 2020;24(1):1–16.

Article  CAS  Google Scholar 

Jacob S, Nair AB. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev Res. 2018;79(5):201–17.

Article  CAS  PubMed  Google Scholar 

Sherje AP, Jadhav M. β-Cyclodextrin-based inclusion complexes and nanocomposites of rivaroxaban for solubility enhancement. J Mater Sci - Mater Med. 2018;29(12):186. https://doi.org/10.1007/s10856-018-6194-6.

Article  CAS  PubMed  Google Scholar 

Chen N, Di P, Ning S, Jiang W, Jing Q, Ren G, et al. Modified rivaroxaban microparticles for solid state properties improvement based on drug-protein/polymer supramolecular interactions. Powder Technol. 2019;344:819–29.

Article  CAS  Google Scholar 

Nepal PR, Han HK, Choi HK. Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation. Int J Pharm. 2010;383(1–2):147–53.

Article  CAS  PubMed  Google Scholar 

Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231(2):131–44.

Article  CAS  PubMed  Google Scholar 

Kapourani A, Eleftheriadou K, Kontogiannopoulos KN, Barmpalexis P. Evaluation of rivaroxaban amorphous solid dispersions physical stability via molecular mobility studies and molecular simulations. Eur J Pharm Sci. 2021;157: 105642. https://doi.org/10.1016/j.ejps.2020.105642.

Article  CAS  PubMed  Google Scholar 

Metre S, Mukesh S, Samal SK, Chand M, Sangamwar AT. Enhanced biopharmaceutical performance of rivaroxaban through polymeric amorphous solid dispersion. Mol Pharm. 2018;15(2):652–68.

Article  CAS  PubMed  Google Scholar 

Ganesh M, Shekar BC, Madhusudan Y . Design and optimization of rivaroxaban lipid solid dispersion for dissolution enhancement using statistical experimental design. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm. 2016;10(1)59–64.

Alshehri S, Imam SS, Hussain A, Altamimi MA, Alruwaili NK, Alotaibi F, Alanazi A, Shakeel F. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Delivery. 2020;27(1):1625–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahajan A, Surti N, Koladiya P. Solid dispersion adsorbate technique for improved dissolution and flow properties of lurasidone hydrochloride: characterization using 3(2) factorial design. Drug Dev Ind Pharm. 2018;44(3):463–71.

Article  CAS  PubMed  Google Scholar 

Kaushik D, Singh N, Arora A. Enhancement of dissolution profile of gliclazide by solid dispersion adsorbates. Lat Am J Pharm. 2011;30:2057–60.

CAS  Google Scholar 

Gupta MK, Goldman D, Bogner RH, Tseng YC. Enhanced drug dissolution and bulk properties of solid dispersions granulated with a surface adsorbent. Pharm Dev Technol. 2001;6(4):563–72.

Article  CAS  PubMed  Google Scholar 

Hentzschel CM, Alnaief M, Smirnova I, Sakmann A, Leopold CS. Tableting properties of silica aerogel and other silicates. Drug Dev Ind Pharm. 2012;38(4):462–7.

Article  CAS  PubMed  Google Scholar 

Wang Y, Zhao Q, Hu Y, Sun L, Bai L, Jiang T, Wang S. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica. Int J Nanomed. 2013;8:4015–31.

Article  Google Scholar 

Tawfeek HM, Roberts M, El Hamd MA, Abdellatif AAH, Younis MA. Glibenclamide mini-tablets with an enhanced pharmacokinetic and pharmacodynamic performance. AAPS PharmSciTech. 2018;19(7):2948–60.

Article  CAS  PubMed  Google Scholar 

Nair AB, Chakraborty B, Murthy SN. Effect of polyethylene glycols on the trans-ungual delivery of terbinafine. Curr Drug Deliv. 2010;7(5):407–14.

Article  CAS  PubMed  Google Scholar 

Shah J, Vasanti S, Anroop B, Vyas H. Enhancement of dissolution rate of valdecoxib by solid dispersions technique with PVP K 30 & PEG 4000: preparation and in vitro evaluation. J Incl Phenom Macrocycl Chem. 2009;63(1):69–75.

Article  CAS  Google Scholar 

Altamimi MA, Elzayat EM, Qamar W, Alshehri SM, Sherif AY, Haq N, Shakeel F. Evaluation of the bioavailability of hydrocortisone when prepared as solid dispersion. Saudi pharmaceutical journal. 2019;27(5):629–36.

Article  PubMed  PubMed Central  Google Scholar 

Farmoudeh A, Rezaeiroshan A, Abbaspour M, Nokhodchi A, Ebrahimnejad P. Solid dispersion pellets: an efficient pharmaceutical approach to enrich the solubility and dissolution rate of deferasirox. Biomed Res Int. 2020;2020:8583540. https://doi.org/10.1155/2020/8583540.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raval MK, Patel JM, Parikh RK, Sheth NR. Dissolution enhancement of chlorzoxazone using cogrinding technique. International journal of pharmaceutical investigation. 2015;5(4):247–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jhaveri M, Nair AB, Shah J, Jacob S, Patel V, Mehta T. Improvement of oral bioavailability of carvedilol by liquisolid compact: optimization and pharmacokinetic study. Drug Deliv Transl Res. 2020;10(4):975–85.

Article  CAS  PubMed  Google Scholar 

Kwon J, Giri BR, Song ES, Bae J, Lee J, Kim DW. Spray-dried amorphous solid dispersions of atorvastatin calcium for improved supersaturation and oral bioavailability. Pharmaceutics. 2019;11(9):461. https://doi.org/10.3390/pharmaceutics11090461.

Article  CAS  PubMed Central  Google Scholar 

Nair A, Gupta R, Vasanti S. In vitro controlled release of alfuzosin hydrochloride using HPMC-based matrix tablets and its comparison with marketed product. Pharm Dev Technol. 2007;12(6):621–5.

Article  CAS  PubMed  Google Scholar 

Harsha SN, Aldhubiab BE, Nair AB, Alhaider IA, Attimarad M, Venugopala KN, Srinivasan S, Gangadhar N, Asif AH. Nanoparticle formulation by Büchi B-90 nano spray dryer for oral mucoadhesion. Drug Des Dev Ther. 2015;9:273–82.

Article  CAS  Google Scholar 

Sakure K, Kumari L, Badwaik H. Development and evaluation of solid dispersion based rapid disintegrating tablets of poorly water-soluble anti-diabetic drug. J Drug Delivery Sci Technol. 2020;60:101942. https://doi.org/10.1016/j.jddst.2020.101942.

Article  CAS  Google Scholar 

Çelebier M, Kaynak M, Altinoz S, Selma S. UV spectrophotometric method for determination of the dissolution profile of rivaroxaban. Dissolut Technol. 2014;21:56–9.

Article  Google Scholar 

Abdallah MA, Al-Ghobashy MA, Lotfy HM. Investigation of the profile and kinetics of degradation of rivaroxaban using HPLC, TLC-densitometry and LC/MS/MS: application to pre-formulation studies. Bulletin of Faculty of Pharmacy, Cairo University. 2015;53(1):53–61.

Article  Google Scholar 

Shah P, Sarolia J, Vyas B, Wagh P, Kaul A, Mishra AK. PLGA nanoparticles for nose to brain delivery of clonazepam: formulation, optimization by 32 factorial design, in-vitro and in-vivo evaluation. Curr Drug Deliv. 2021;18(6):805–24.

Article  CAS  PubMed  Google Scholar 

Borderwala K, Swain G, Mange N, Gandhi J, Lalan M, Singhvi G, Shah P. Optimization of solid lipid nanoparticles of ezetimibe in combination with simvastatin using quality by design (QbD). Nanoscience & Nanotechnology-Asia. 2020;10(4):404–18.

Article  CAS  Google Scholar 

Naik B, Gandhi J, Shah P, Naik H, Sarolia J. Asenapine maleate loaded solid lipid nanoparticles for oral delivery. International Research Journal of Pharmacy. 2017;8:45–53.

Article  CAS  Google Scholar 

Nair AB, Al-Dhubiab BE, Shah J, Jacob S, Saraiya V, Attimarad M, SreeHarsha N, Akrawi SH, Shehata TM. Mucoadhesive buccal film of almotriptan improved therapeutic delivery in rabbit model. Saudi pharmaceutical journal. 2020;28(2):201–9.

Article  CAS  PubMed  Google Scholar 

Nair AB, Sreeharsha N, Al-Dhubiab BE, Hiremath JG, Shinu P, Attimarad M, Venugopala KN, Mutahar M. HPMC- and PLGA-based nanoparticles for the mucoadhesive delivery of sitagliptin: optimization and in vivo evaluation in rats. Materials. 2019;12:4239. https://doi.org/10.3390/ma12244239.

Article  CAS  PubMed Central 

留言 (0)

沒有登入
gif