Development of doxorubicin hydrochloride–loaded whey protein nanoparticles and its surface modification with N-acetyl cysteine for triple-negative breast cancer

Hwang S-Y, Park S, Kwon Y. Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther. 2019;199:30–57. https://doi.org/10.1016/j.pharmthera.2019.02.006.

Article  CAS  PubMed  Google Scholar 

Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–31. https://doi.org/10.1016/j.arabjc.2017.05.011.

Article  CAS  Google Scholar 

Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: emerging carriers for drug delivery. Saudi Pharmaceutical Journal. 2011;19(3):129–41. https://doi.org/10.1016/j.jsps.2011.04.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein nanoparticles: promising platforms for drug delivery applications. ACS Biomater Sci Eng. 2018;4(12):3939–61. https://doi.org/10.1021/acsbiomaterials.8b01098.

Article  CAS  PubMed  Google Scholar 

Patel S. Emerging trends in nutraceutical applications of whey protein and its derivatives. J Food Sci Technol. 2015;52(11):6847–58. https://doi.org/10.1007/s13197-015-1894-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Souza FN, Gebara C, Ribeiro MCE, Chaves KS, Gigante ML, Grosso CRF. Production and characterization of microparticles containing pectin and whey proteins. Food Res Int. 2012;49(1):560–6. https://doi.org/10.1016/j.foodres.2012.07.041.

Article  CAS  Google Scholar 

Corrochano AR, Buckin V, Kelly PM, Giblin L. Invited review: whey proteins as antioxidants and promoters of cellular antioxidant pathways. J Dairy Sci. 2018;101(6):4747–61. https://doi.org/10.3168/jds.2017-13618.

Article  CAS  PubMed  Google Scholar 

Kanoujia J, Singh M, Singh P, Parashar P, Tripathi CB, Arya M, et al. Genipin crosslinked soy-whey based bioactive material for atorvastatin loaded nanoparticles: preparation, characterization and in vivo antihyperlipidemic study. RSC Adv. 2016;6(96):93275–87. https://doi.org/10.1039/C6RA16830B.

Article  CAS  Google Scholar 

Wei Y, Zhan X, Dai L, Zhang L, Mao L, Yuan F, et al. Formation mechanism and environmental stability of whey protein isolate-zein core-shell complex nanoparticles using the pH-shifting method. LWT. 2020;110605.

Giroux HJ, Britten M. Encapsulation of hydrophobic aroma in whey protein nanoparticles. J Microencapsul. 2011;28(5):337–43. https://doi.org/10.3109/02652048.2011.569761.

Article  CAS  PubMed  Google Scholar 

Hortobágyi GN. Anthracyclines in the treatment of cancer. An overview Drugs. 1997;54(Suppl 4):1–7. https://doi.org/10.2165/00003495-199700544-00003.

Article  PubMed  Google Scholar 

Reddy LH, Murthy R. Pharmacokinetics and biodistribution studies of doxorubicin loaded poly (butyl cyanoacrylate) nanoparticles synthesized by two different techniques. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2004;148(2):161–6.

Article  CAS  PubMed  Google Scholar 

Hasegawa M, Takahashi H, Rajabi H, Alam M, Suzuki Y, Yin L et al. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget. 2016;7(11).

Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620. https://doi.org/10.1007/s13238-020-00789-5.

Article  CAS  PubMed  Google Scholar 

Alothaim T, Charbonneau M, Tang X. HDAC6 inhibitors sensitize non-mesenchymal triple-negative breast cancer cells to cysteine deprivation. Sci Rep. 2021;11(1):10956. https://doi.org/10.1038/s41598-021-90527-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prajapati R, Garcia-Garrido E, Somoza Á. Albumin-based nanoparticles for the delivery of doxorubicin in breast cancer. Cancers. 2021;13(12):3011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kayani Z, Bordbar A-K, Firuzi O. Novel folic acid-conjugated doxorubicin loaded β-lactoglobulin nanoparticles induce apoptosis in breast cancer cells. Biomed Pharmacother. 2018;107:945–56. https://doi.org/10.1016/j.biopha.2018.08.047.

Article  CAS  PubMed  Google Scholar 

Morshed RA, Muroski ME, Dai Q, Wegscheid ML, Auffinger B, Yu D, et al. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol Pharm. 2016;13(6):1843–54. https://doi.org/10.1021/acs.molpharmaceut.6b00004.

Article  CAS  PubMed  Google Scholar 

Prados J, Melguizo C, Ortiz R, Vélez C, Alvarez PJ, Arias JL, et al. Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy. Anticancer Agents Med Chem. 2012;12(9):1058–70. https://doi.org/10.2174/187152012803529646.

Article  CAS  PubMed  Google Scholar 

Singh S, Maurya P, Saraf SA. Cutting edge targeting strategies utilizing nanotechnology in breast cancer therapy. Frontiers in Anti-Cancer Drug Discovery 2019;10:180.

Singh S, Singh P, Mishra N, Maurya P, Singh N, Nisha R, et al. Advanced drug delivery systems in breast cancer. Advanced Drug Delivery Systems in the Management of Cancer. Elsevier; 2021;107–26.

Mohamed AI, Abd-Motagaly AME, Ahmed OAA, Amin S, Mohamed Ali AI. Investigation of drug–polymer compatibility using chemometric-assisted UV-spectrophotometry. Pharmaceutics. 2017;9(1):7.

Article  PubMed Central  Google Scholar 

Teng Z, Luo Y, Wang Q. Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. J Agric Food Chem. 2012;60(10):2712–20. https://doi.org/10.1021/jf205238x.

Article  CAS  PubMed  Google Scholar 

Guideline I. Stability testing of new drug substances and products. Q1A (R2), current step. 2003;4:1–24.

Li Y, Angelova A, Hu F, Garamus VM, Peng C, Li N, et al. PH responsiveness of hexosomes and cubosomes for combined delivery of Brucea javanica oil and doxorubicin. Langmuir. 2019;35(45):14532–42.

Article  CAS  PubMed  Google Scholar 

Tripathi CB, Parashar P, Arya M, Singh M, Kanoujia J, Kaithwas G, et al. QbD-based development of α-linolenic acid potentiated nanoemulsion for targeted delivery of doxorubicin in DMBA-induced mammary gland carcinoma: in vitro and in vivo evaluation. Drug Deliv Transl Res. 2018;8(5):1313–34. https://doi.org/10.1007/s13346-018-0525-5.

Article  CAS  PubMed  Google Scholar 

Akbaribazm M, Khazaei MR, Khazaei M. Trifolium pratense L.(red clover) extract and doxorubicin synergistically inhibits proliferation of 4T1 breast cancer in tumor‐bearing BALB/c mice through modulation of apoptosis and increase antioxidant and anti‐inflammatory related pathways. Food Science & Nutrition. 2020;8(8):4276–90.

Kahoush M, Behary N, Cayla A, Mutel B, Guan J, Nierstrasz V. Genipin-mediated immobilization of glucose oxidase enzyme on carbon felt for use as heterogeneous catalyst in sustainable wastewater treatment. J Environ Chem Eng. 2021;9. https://doi.org/10.1016/j.jece.2021.105633

Michel P, Abedinzadeh Z, Grajcar L, Baron M. Spectroscopic study of N-acetylcysteine and N-acetylcystine/hydrogen peroxide complexation. Chem Phys. 1998;228:279–91. https://doi.org/10.1016/S0301-0104(97)00337-6.

Article  Google Scholar 

Shen H, Gao Q, Ye Q, Yang S, Wu Y, Huang Q, et al. Peritumoral implantation of hydrogel-containing nanoparticles and losartan for enhanced nanoparticle penetration and antitumor effect. Int J Nanomedicine. 2018;13:7409–26. https://doi.org/10.2147/ijn.s178585.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang X, Ding CK, Wu J, Sjol J, Wardell S, Spasojevic I, et al. Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling. Oncogene. 2017;36(30):4235–42. https://doi.org/10.1038/onc.2016.394.

Article  CAS  PubMed  Google Scholar 

Bounous G. Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anticancer Res. 2000;20(6c):4785–92.

CAS  PubMed  Google Scholar 

Kaushik D, Bansal G. Four new degradation products of doxorubicin: an application of forced degradation study and hyphenated chromatographic techniques. Journal of pharmaceutical analysis. 2015;5(5):285–95. https://doi.org/10.1016/j.jpha.2015.05.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim A, Ng WB, Bernt W, Cho N-J. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. Sci Rep. 2019;9(1):2639. https://doi.org/10.1038/s41598-019-38915-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanoujia J, Singh M, Singh P, Saraf SA. Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity. Mater Sci Eng C. 2016;69:967–76. https://doi.org/10.1016/j.msec.2016.08.011.

Article  CAS  Google Scholar 

Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7(1):44735. https://doi.org/10.1038/srep44735.

Article  PubMed  PubMed Central  Google Scholar 

Persi E, Duran-Frigola M, Damaghi M, Roush WR, Aloy P, Cleveland JL, et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat Commun. 2018;9(1):2997. https://doi.org/10.1038/s41467-018-05261-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

England CG, Miller MC, Kuttan A, Trent JO, Frieboes HB. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur J Pharm Biopharm. 2015;92:120–9. https://doi.org/10.1016/j.ejpb.2015.02.017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delneste Y, Jeannin P, Potier L, Romero P, Bonnefoy J-Y. N-acetyl-L-cysteine exhibits antitumoral activity by increasing tumor necrosis factor α-dependent T-cell cytotoxicity. Blood. 1997;90(3):1124–32. https://doi.org/10.1182/blood.V90.3.1124.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif