The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing

Buck DW, Dumanian GA. Bone biology and physiology: Part I. The fundamentals. Plast Reconstr Surg. 2012;129:1314–20.

Article  CAS  PubMed  Google Scholar 

Bae WC, Chen PC, Chung CB, Masuda K, D’Lima D, Du J. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res. 2012;27:848–57.

Article  PubMed  Google Scholar 

Habibovic P. * Strategic directions in osteoinduction and biomimetics. Tissue Eng Part A. 2017;23:1295–6.

Article  PubMed  Google Scholar 

Iaquinta MR, Mazzoni E, Bononi I, Rotondo JC, Mazziotta C, Montesi M, Sprio S, Tampieri A, Tognon M, Martini F. Adult stem cells for bone regeneration and repair. Front Cell Dev Biol. 2019;7:268.

Article  PubMed  PubMed Central  Google Scholar 

Pessoa EAM, Braune A, Casado PL, Tannure PN. Alveolar bone graft: clinical profile and risk factors for complications in oral cleft patients. Cleft Palate Craniofac J. 2017;54:530–4.

Article  PubMed  Google Scholar 

De Long WG, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma surgery: a critical analysis. J Bone Joint Surg Am. 2007;89:649–58.

Article  PubMed  Google Scholar 

Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;31(9):66.

Article  Google Scholar 

Shin RL, Lee CW, Shen OY, Xu H, Lee OK. The crosstalk between mesenchymal stem cells and macrophages in bone regeneration: a systematic review. Stem Cells Int. 2021. https://doi.org/10.1155/2021/8835156.

Article  PubMed  PubMed Central  Google Scholar 

Zhu Y, Deng S, Ma Z, Kong L, Li H, Chan HF. Macrophages activated by akermanite/alginate composite hydrogel stimulate migration of bone marrow-derived mesenchymal stem cells. Biomed Mater. 2021. https://doi.org/10.1088/1748-605X/abe80a.

Article  PubMed  Google Scholar 

Baht GS, Vi L, Alman BA. The role of the immune cells in fracture healing. Curr Osteoporos Rep. 2018;16:138–45.

Article  PubMed  PubMed Central  Google Scholar 

Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev. 2015;94:126–40.

Article  CAS  PubMed  Google Scholar 

Perdiguero EG, Geissmann F. The development and maintenance of resident macrophages. Nat Immunol. 2016;17:2–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol. 2011;41:2155–64.

Article  CAS  PubMed  Google Scholar 

Ghigo C, Mondor I, Jorquera A, Nowak J, Wienert S, Zahner SP, Clausen BE, Luche H, Malissen B, Klauschen F, Bajénoff M. Multicolor fate mapping of Langerhans cell homeostasis. J Exp Med. 2013;210:1657–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanitakis J, Morelon E, Petruzzo P, Badet L, Dubernard JM. Self-renewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft. Exp Dermatol. 2011;20:145–6.

Article  CAS  PubMed  Google Scholar 

van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968;128:415–35.

Article  PubMed  PubMed Central  Google Scholar 

Michalski MN, Koh AJ, Weidner S, Roca H, McCauley LK. Modulation of Osteoblastic cell efferocytosis by bone marrow macrophages. J Cell Biochem. 2016;117:2697–706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest. 2002;109:41–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao YQ, Freire-de-Lima CG, Schiemann WP, Bratton DL, Vandivier RW, Henson PM. Transcriptional and translational regulation of TGF-beta production in response to apoptotic cells. J Immunol. 2008;181:3575–85.

Article  CAS  PubMed  Google Scholar 

Song X, Xue Y, Fan S, Hao J, Deng R. Lipopolysaccharide-activated macrophages regulate the osteogenic differentiation of bone marrow mesenchymal stem cells through exosomes. PeerJ. 2022;10: e13442.

Article  PubMed  PubMed Central  Google Scholar 

Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M, Alman BA. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. 2015;30:1090–102.

Article  CAS  PubMed  Google Scholar 

Miron RJ, Bosshardt DD. OsteoMacs: key players around bone biomaterials. Biomaterials. 2016;82:1–19.

Article  CAS  PubMed  Google Scholar 

Wan Z, Shin LY, Wang YF, Huang Z, Dong Y, Lee CW, Kumta SM, Lee OK. Role of skeletal macrophages in fracture repair: a systematic review. Biomed Rep. 2020;13:53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang YH, Guo YC, Wang DR, Liu JY, Pan J. Adipose stem cell-based clinical strategy for neural regeneration: a review of current opinion. Stem Cells Int. 2019. https://doi.org/10.1155/2019/8502370.

Article  PubMed  PubMed Central  Google Scholar 

Wang YH, Wang DR, Guo YC, Liu JY, Pan J. The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration. Regen Ther. 2020;15:285–94.

Article  PubMed  PubMed Central  Google Scholar 

Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.

Article  PubMed  PubMed Central  Google Scholar 

Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.

CAS  PubMed  Google Scholar 

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

Article  CAS  PubMed  Google Scholar 

Boxall SA, Jones E. Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int. 2012. https://doi.org/10.1155/2012/975871.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Pan J, Wang D, Liu J. The use of stem cells in neural regeneration: a review of current opinion. Curr Stem Cell Res Ther. 2018;13:608–17.

Article  CAS  PubMed  Google Scholar 

Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoshino A, Chiba H, Nagai K, Ishii G, Ochiai A. Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochem Biophys Res Commun. 2008;368:305–10.

Article  CAS  PubMed  Google Scholar 

de Souza LE, Malta TM, Kashima Haddad S, Covas DT. Mesenchymal stem cells and pericytes: To what extent are they related? Stem Cells Dev. 2016;25:1843–52.

Article  PubMed  Google Scholar 

Kuhn NZ, Tuan RS. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol. 2010;222:268–77.

Article  CAS  PubMed  Google Scholar 

Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The conceptual framework unifying the immune and skeletal systems. Physiol Rev. 2017;97:1295–349.

Article  CAS  PubMed  Google Scholar 

Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7:292–304.

Article  CAS  PubMed  Google Scholar 

Dar HY, Azam Z, Anupam R, Mondal RK, Srivastava RK. Osteoimmunology: the Nexus between bone and immune system. Front Biosci (Landmark Ed). 2018;23:464–92.

Article  CAS 

留言 (0)

沒有登入
gif