Novel Curcumin Monocarbonyl Analogue-Dithiocarbamate hybrid molecules target human DNA ligase I and show improved activity against colon cancer

Singh DK, Hussain MK, Krishna S, Deshmukh AL, Shameem M, Maurya P, et al. Identification of a novel human DNA ligase i inhibitor that promotes cellular apoptosis in DLD-1 cells: An: in silico and in vitro mechanistic study. RSC Adv. 2016;6:94574–87. https://doi.org/10.1039/c6ra22364h

Article  CAS  Google Scholar 

Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12:801–17. https://doi.org/10.1038/nrc3399

Article  CAS  PubMed  Google Scholar 

Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–74. https://doi.org/10.1038/35077232

Article  CAS  PubMed  Google Scholar 

Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 2016;283:232–45. https://doi.org/10.1111/febs.13574

Article  CAS  PubMed  Google Scholar 

Deshmukh AL, Kumar C, Singh DK, Maurya P, Banerjee D. Dynamics of replication proteins during lagging strand synthesis: A crossroads for genomic instability and cancer. DNA Repair. 2016;42:72–81. https://doi.org/10.1016/j.dnarep.2016.04.010

Article  CAS  PubMed  Google Scholar 

Tomkinson AE, Howes TRL, Wiest NE. DNA ligases as therapeutic targets. Transl. Cancer Res. 2013;2. https://doi.org/10.3978/j.issn.2218-676X.2013.04.04

Ellenberger T, Tomkinson AE. Eukaryotic DNA ligases: structural and functional insights. Annu Rev Biochem. 2008;77:313–38. https://doi.org/10.1146/annurev.biochem.77.061306.123941

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robins P, Lindahl T. DNA ligase IV from HeLa cell nuclei. J Biol Chem. 1996;271:24257–61. https://doi.org/10.1074/jbc.271.39.24257

Article  CAS  PubMed  Google Scholar 

Wei YF, Robins P, Carter K, Caldecott K, Pappin DJ, Yu GL, et al. Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol Cell Biol. 1995;15:3206–16. https://doi.org/10.1128/MCB.15.6.3206

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fragkos M, Ganier O, Coulombe P, Méchali M. DNA replication origin activation in space and time. Nat Rev Mol Cell Biol. 2015;16:360–74. https://doi.org/10.1038/nrm4002

Article  CAS  PubMed  Google Scholar 

Levin DS, Bai W, Yao N, O’Donnell M, Tomkinson AE. An interaction between DNA ligase I and proliferating cell nuclear antigen: Implications for Okazaki fragment synthesis and joining. Proc Natl Acad Sci USA 1997;94:12863–8. https://doi.org/10.1073/pnas.94.24.12863

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dianov GL. Base excision repair targets for cancer therapy. Am J Cancer Res. 2011;1:845–51

CAS  PubMed  PubMed Central  Google Scholar 

Robertson AB, Klungland A, Rognes T, Leiros I. DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci. 2009;66:981–93

Article  CAS  PubMed  Google Scholar 

SÖDERHÄLL S. Properties of a DNA‐Adenylate complex formed in the reaction between mammalian DNA Ligase I and DNA containing single‐strand breaks. Eur J Biochem. 1975;51:129–36. https://doi.org/10.1111/j.1432-1033.1975.tb03913.x

Article  PubMed  Google Scholar 

Webster ADB, Barnes DE, Lindahl T, Arlett CF, Lehmann AR. Growth retardation and immunodeficiency in a patient with mutations in the DNA ligase I gene. Lancet 1992;339:1508–9. https://doi.org/10.1016/0140-6736(92)91266-B

Article  CAS  PubMed  Google Scholar 

Hsieh CL, Arlett CF, Lieber MR. V(D)J recombination in ataxia telangiectasia, Bloom’s syndrome, and a DNA ligase I-associated immunodeficiency disorder. J Biol Chem. 1993;268:20105–9. https://doi.org/10.1016/s0021-9258(20)80700-5

Article  CAS  PubMed  Google Scholar 

Prigent C, Satoh MS, Daly G, Barnes DE, Lindahl T. Aberrant DNA repair and DNA replication due to an inherited enzymatic defect in human DNA ligase I. Mol Cell Biol. 1994;14:310–7. https://doi.org/10.1128/mcb.14.1.310

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnes DE, Johnston LH, Kodama K, Tomkinson AE, Lasko DD, Lindahl T. Human DNA ligase I cDNA: cloning and functional expression in Saccharomyces cerevisiae. Proc Natl Acad Sci. 1990;87:6679–83. https://doi.org/10.1073/pnas.87.17.6679

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montecucco A, Biamonti G, Savini E, Focher F, Spadari S, Ciarrocchi G. DNA ligase I gene expression during differentiation and cell proliferation. Nucleic Acids Res. 1992;20:6209–14. https://doi.org/10.1093/nar/20.23.6209

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun D, Urrabaz R, Nguyen M, Marty J, Stringer S, Cruz E, et al. Elevated expression of DNA ligase I in human cancers. Clin Cancer Res. 2001;7:4143–8

CAS  PubMed  Google Scholar 

Singh DK, Krishna S, Chandra S, Shameem M, Deshmukh AL, Banerjee D. Human DNA Ligases: A comprehensive new look for cancer therapy. Med Res Rev 2014;34:567–95. https://doi.org/10.1002/med.21298

Article  CAS  PubMed  Google Scholar 

Bathula SR, Sharma K, Singh DK, Reddy MP, Sajja PR, Deshmukh AL, et al. siRNA delivery using a cationic-lipid-based highly selective human DNA Ligase I inhibitor. ACS Appl Mater Interfaces. 2018;10:1616–22. https://doi.org/10.1021/acsami.7b19193

Article  CAS  PubMed  Google Scholar 

Zhong S, Chen X, Zhu X, Dziegielewska B, Bachman KE, Ellenberger T, et al. Identification and validation of human DNA ligase inhibitors using computer-aided drug design. J Med Chem. 2008;51:4553–62. https://doi.org/10.1021/jm8001668

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandey M, Kumar S, Goldsmith G, Srivastava M, Elango S, Shameem M, et al. Identification and characterization of novel ligase I inhibitors. Mol Carcinog 2017;56:550–66. https://doi.org/10.1002/mc.22516

Article  CAS  PubMed  Google Scholar 

Shameem M, Kumar R, Krishna S, Kumar C, Siddiqi MI, Kundu B, et al. Synthetic modified pyrrolo [1,4] benzodiazepine molecules demonstrate selective anticancer activity by targeting the human ligase 1 enzyme: An in silico and in vitro mechanistic study. Chem Biol Interact. 2015;237:115–24. https://doi.org/10.1016/j.cbi.2015.05.024

Article  CAS  PubMed  Google Scholar 

Robins P, Lindahl T. DNA ligase IV from HeLa cell nuclei. J Biol Chem. 1996;271:24257–61. https://doi.org/10.1074/jbc.271.39.24257

Article  CAS  PubMed  Google Scholar 

Rose JL, Reeves KC, Likhotvorik RI, Hoyt DG. Base excision repair proteins are required for integrin-mediated suppression of bleomycin-induced DNA breakage in murine lung endothelial cells. J Pharmacol Exp Ther. 2007;321:318–26. https://doi.org/10.1124/jpet.106.113498

Article  CAS  PubMed  Google Scholar 

Chen J, Ghorai MK, Kenney G, Stubbe JA. Mechanistic studies on bleomycin-mediated DNA damage: Multiple binding modes can result in double-stranded DNA cleavage. Nucleic Acids Res. 2008;36:3781–90. https://doi.org/10.1093/nar/gkn302

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu G, Wang M, He H, Li J. Doxorubicin-Loaded Tumor-targeting Peptide-decorated Polypeptide Nanoparticles For Treating Primary Orthotopic Colon Cancer. Front Pharm. 2021;12:2675 https://doi.org/10.3389/FPHAR.2021.744811/BIBTEX

Article  Google Scholar 

Pawlak A, Ziolo E, Fiedorowicz A, Fidyt K, Strzadala L, Kalas W. Long-lasting reduction in clonogenic potential of colorectal cancer cells by sequential treatments with 5-azanucleosides and topoisomerase inhibitors, BMC Cancer. 16 2016. https://doi.org/10.1186/s12885-016-2925-6.

Mandalapu D, Singh DK, Gupta S, Balaramnavar VM, Shafiq M, Banerjee D, et al. Discovery of monocarbonyl curcumin hybrids as a novel class of human DNA ligase i inhibitors: In silico design, synthesis and biology. RSC Adv. 2016;6:26003–18. https://doi.org/10.1039/c5ra25853g

Article  CAS  Google Scholar 

McGaw LJ, Elgorashi EE, Eloff JN. Cytotoxicity of African medicinal plants against normal animal and human cells, Toxicol. Surv. Afr. Med. Plants. 2014;181–233. https://doi.org/10.1016/B978-0-12-800018-2.00008-X.

Singh K, Gangrade A, Jana A, Mandal BB, Das N. Design, synthesis, characterization, and antiproliferative activity of organoplatinum compounds bearing a 1,2,3-Triazole Ring. ACS Omega. 2019;4:835–41. https://doi.org/10.1021/acsomega.8b02849

Article  CAS  Google Scholar 

Mandalapu D, Singh DK, Gupta S, Balaramnavar VM, Shafiq M, Banerjee D, et al. Discovery of monocarbonyl curcumin hybrids as a novel class of human DNA ligase I inhibitors: in silico design, synthesis and biology. RSC Adv. 2016;6:26003–18. https://doi.org/10.1039/C5RA25853G

Article  CAS  Google Scholar 

Krishna S, Singh DK, Meena S, Datta D, Siddiqi MI, Banerjee D. Pharmacophore-based screening and identification of novel human ligase i inhibitors with potential anticancer activity, J. Chem. Inf. Model. 2014. https://doi.org/10.1021/ci5000032.

Gupta S, Maurya P, Upadhyay A, Kushwaha P, Krishna S, Siddiqi MI, et al. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur J Med Chem. 2018;143:1981–96. https://doi.org/10.1016/j.ejmech.2017.11.015

Article  CAS  PubMed  Google Scholar 

Hussain MK, Singh DK, Singh A, Asad M, Ansari MI, Shameem M, et al. A Novel Benzocoumarin-Stilbene Hybrid as a DNA ligase i inhibitor with in vitro and in vivo anti-tumor activity in breast cancer models. Sci. Rep. 7 2017. https://doi.org/10.1038/s41598-017-10864-3.

Pascal JM, O’Brien PJ, Tomkinson AE, Ellenberger T. Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature. 2004;432:473–8. https://doi.org/10.1038/nature03082

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif