Dynamic analysis of iris changes and a deep learning system for automated angle-closure classification based on AS-OCT videos

Li X, Chan E, Liao J, Wong T, Aung T, Cheng CY. Number of people with glaucoma in Asia in 2020 and 2040: a hierarchical Bayesian meta-analysis. Invest Ophthalmol Vis Sci. 2013;54:2656.

Google Scholar 

Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–90.

Article  Google Scholar 

Su DH, Friedman DS, See JL, Chew PT, Chan YH, Nolan WP, et al. Degree of angle closure and extent of peripheral anterior synechiae: an anterior segment OCT study. Br J Ophthalmol. 2008;92(1):103–7.

Article  CAS  Google Scholar 

Mapstone R. Mechanics of pupil block. Br J Ophthalmol. 1968;52(1):19–25.

Article  CAS  Google Scholar 

Foster PJ, Oen FT, Machin D, Ng TP, Devereux JG, Johnson GJ, et al. The prevalence of glaucoma in Chinese residents of Singapore: a cross-sectional population survey of the Tanjong Pagar district. Arch Ophthalmol. 2000;118(8):1105–11.

Article  CAS  Google Scholar 

Sihota R, Ghate D, Mohan S, Gupta V, Pandey RM, Dada T. Study of biometric parameters in family members of primary angle closure glaucoma patients. Eye (Lond). 2008;22(4):521–7.

Article  CAS  Google Scholar 

Fu H, Li F, Sun X, Cao X, Liao J, Orlando JI, et al. AGE challenge: angle closure glaucoma evaluation in anterior segment optical coherence tomography. Med Image Anal. 2020;66: 101798.

Article  Google Scholar 

Zheng C, Cheung CY, Narayanaswamy A, Ong SH, Perera SA, Baskaran M, et al. Pupil dynamics in Chinese subjects with angle closure. Graefes Arch Clin Exp Ophthalmol. 2012;250(9):1353–9.

Article  Google Scholar 

Quigley HA, Silver DM, Friedman DS, He M, Plyler RJ, Eberhart CG, et al. Iris cross-sectional area decreases with pupil dilation and its dynamic behavior is a risk factor in angle closure. J Glaucoma. 2009;18(3):173–9.

Article  Google Scholar 

Narayanaswamy A, Zheng C, Perera SA, Htoon HM, Friedman DS, Tun TA, et al. Variations in iris volume with physiologic mydriasis in subtypes of primary angle closure glaucoma. Invest Ophthalmol Vis Sci. 2013;54(1):708–13.

Article  Google Scholar 

Ganeshrao SB, Mani B, Ulganathan S, Shantha B, Vijaya L. Change in iris parameters with physiological mydriasis. Optom Vis Sci. 2012;89(4):483–8.

Article  Google Scholar 

Seager FE, Jefferys JL, Quigley HA. Comparison of dynamic changes in anterior ocular structures examined with anterior segment optical coherence tomography in a cohort of various origins. Invest Ophthalmol Vis Sci. 2014;55(3):1672–83.

Article  Google Scholar 

Aptel F, Denis P. Optical coherence tomography quantitative analysis of iris volume changes after pharmacologic mydriasis. Ophthalmology. 2010;117(1):3–10.

Article  Google Scholar 

Quigley HA. The iris is a sponge: a cause of angle closure. Ophthalmology. 2010;117(1):1–2.

Article  Google Scholar 

Lifton J, Burkemper B, Jiang X, Pardeshi AA, Richter G, McKean-Cowdin R, et al. Ocular biometric determinants of dark-to-light change in angle width: the Chinese American Eye Study. Am J Ophthalmol. 2022;237:183–92.

Article  CAS  Google Scholar 

Baskaran M, Foo RC, Cheng CY, Narayanaswamy AK, Zheng YF, Wu R, et al. The prevalence and types of glaucoma in an urban Chinese population: the Singapore Chinese Eye Study. JAMA Ophthalmol. 2015;133(8):874–80.

Article  Google Scholar 

Zheng C, Guzman CP, Cheung CY, He Y, Friedman DS, Ong SH, et al. Analysis of anterior segment dynamics using anterior segment optical coherence tomography before and after laser peripheral iridotomy. JAMA Ophthalmol. 2013;131(1):44–9.

Article  Google Scholar 

Hao H, Zhao Y, Yan Q, Higashita R, Zhang J, Zhao Y, et al. Angle-closure assessment in anterior segment OCT images via deep learning. Med Image Anal. 2021;69:101956.

Article  Google Scholar 

Hao H, Fu H, Xu Y, Yang J, Li F, Zhang X, et al. Open-appositional-synechial anterior chamber angle classification in AS-OCT sequences. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020;12265 LNCS:715–24.

Li F, Yang Y, Sun X, Qiu Z, Zhang S, Tun TA, et al. Digital gonioscopy based on three-dimensional anterior segment optical coherence tomography: an international multicenter study. Ophthalmology. 2022;129(1):45–53.

Article  Google Scholar 

Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86(2):238–42.

Article  Google Scholar 

Friedman DS, Gazzard G, Foster P, Devereux J, Broman A, Quigley H, et al. Ultrasonographic biomicroscopy, Scheimpflug photography, and novel provocative tests in contralateral eyes of Chinese patients initially seen with acute angle closure. Arch Ophthalmol. 2003;121(5):633–42.

Article  Google Scholar 

Zheng C, Cheung CY, Aung T, Narayanaswamy A, Ong SH, Friedman DS, et al. In vivo analysis of vectors involved in pupil constriction in Chinese subjects with angle closure. Invest Ophthalmol Vis Sci. 2012;53(11):6756–62.

Article  Google Scholar 

Li M, Chen Y, Chen X, Zhu W, Chen X, Wang X, et al. Differences between fellow eyes of acute and chronic primary angle closure (glaucoma): an ultrasound biomicroscopy quantitative study. PLoS One. 2018;13(2):e0193006.

Article  Google Scholar 

Zheng C, Xie X, Huang L, Chen B, Yang J, Lu J, et al. Detecting glaucoma based on spectral domain optical coherence tomography imaging of peripapillary retinal nerve fiber layer: a comparison study between hand-crafted features and deep learning model. Graefes Arch Clin Exp Ophthalmol. 2020;258(3):577–85.

Article  Google Scholar 

Liu S, Yu M, Ye C, Lam DSC, Leung CK. Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement. Invest Ophthalmol Vis Sci. 2011;52(12):8598–603.

Article  Google Scholar 

Zhang Y, Li SZ, Li L, He MG, Thomas R, Wang NL. Dynamic iris changes as a risk factor in primary angle closure disease. Invest Ophthalmol Vis Sci. 2016;57(1):218–26.

Article  CAS  Google Scholar 

Woo EK, Pavlin CJ, Slomovic A, Taback N, Buys YM. Ultrasound biomicroscopic quantitative analysis of light-dark changes associated with pupillary block. Am J Ophthalmol. 1999;127(1):43–7.

Article  CAS  Google Scholar 

Williams D, Zheng Y, Davey PG, Bao F, Shen M, Elsheikh A. Reconstruction of 3D surface maps from anterior segment optical coherence tomography images using graph theory and genetic algorithms. Biomed Signal Process Control. 2016;25:91–8.

Article  Google Scholar 

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. p. 770–8.

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.

Article  CAS  Google Scholar 

Donahue J, Hendricks LA, Guadarrama S, Rohrbach M, Venugopalan S, Darrell T, et al. Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2015. p. 2625–34.

Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, et al. The kinetics human action video dataset. arXiv:1705.06950. 2017.

Zhang Y, Hedo R, Rivera A, Rull R, Richardson S, Tu XM. Post hoc power analysis: is it an informative and meaningful analysis? Gen Psychiatr. 2019;32(4):e100069.

Article  Google Scholar 

Fu H, Baskaran M, Xu Y, Lin S, Wong DWK, Liu J, et al. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images. Am J Ophthalmol. 2019;203:37–45.

Article  Google Scholar 

Xu Y, Liu J, Cheng J, Lee BH, Wong DWK, Baskaran M, et al. Automated anterior chamber angle localization and glaucoma type classification in OCT images. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:7380–3.

PubMed  Google Scholar 

Xu Y, Liu J, Wong DWK, Baskaran M, Perera SA, Aung T. Similarity-weighted linear reconstruction of anterior chamber angles for glaucoma classification. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE; 2016. p. 693–7.

Fu H, Xu Y, Lin S, Wong DWK, Mani B, Mahesh M, et al. Multi-context deep network for angle-closure glaucoma screening in anterior segment OCT. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2018. p. 356–63.

Tan M, Le QV. Efficientnet: rethinking model scaling for convolutional neural networks. arXiv preprint. arXiv:190511946. 2019.

Nongpiur ME, Sakata LM, Friedman DS, He M, Chan YH, Lavanya R, et al. Novel association of smaller anterior chamber width with angle closure in Singaporeans. Ophthalmology. 2010;117(10):1967–73.

Article  Google Scholar 

Fu H, Xu Y, Lin S, Wong DWK, Baskaran M, Mahesh M, et al. Angle-closure detection in anterior segment OCT based on multilevel deep network. IEEE Trans Cybern. 2020;50(7):3358–66.

Article  Google Scholar 

Quigley HA. Angle-closure glaucoma-simpler answers to complex mechanisms: LXVI Edward Jackson Memorial Lecture. Am J Ophthalmol. 2009;148(5):657-69.e1.

Article  Google Scholar 

Leung CK, Cheung CY, Li H, Dorairaj S, Yiu CK, Wong AL, et al. Dynamic analysis of dark-light changes of the anterior chamber angle with anterior segment OCT. Invest Ophthalmol Vis Sci. 2007;48(9):4116–22.

Article  Google Scholar 

Huang EC, Barocas VH. Active iris mechanics and pupillary block: steady-state analysis and comparison with anatomical risk factors. Ann Biomed Eng. 2004;32(9):1276–85.

Article  Google Scholar 

留言 (0)

沒有登入
gif