B cells oppose Mycoplasma pneumoniae vaccine enhanced disease and limit bacterial colonization of the lungs

Marston, B. J. et al. Incidence of Community-Acquired Pneumonia Requiring Hospitalization: Results of a Population-Based Active Surveillance Study in Ohio. Arch. Intern. Med. 157, 1709–1718 (1997).

Article  CAS  PubMed  Google Scholar 

Kumar, S. Mycoplasma pneumoniae: a significant but underrated pathogen in paediatric community-acquired lower respiratory tract infections. Indian J. Med. Res. 147, 23–31 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waites, K. B. & Talkington, D. F. Mycoplasma pneumoniae and Its Role as a Human Pathogen. Clin. Microbiol. Rev. 17, 697–728 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bajantri, B., Venkatram, S. & Diaz-Fuentes, G. Mycoplasma pneumoniae: a potentially severe infection. J. Clin. Med. Res. 10, 535–544 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Biscardi, S. et al. Mycoplasma pneumoniae and Asthma in Children. Clin. Infect. Dis. 38, 1341–1346 (2004).

Article  PubMed  Google Scholar 

Hong, S.-J. The Role of Mycoplasma pneumoniae Infection in Asthma. Allergy Asthma Immunol. Res. 4, 59–61 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Nisar, N., Guleria, R., Kumar, S., Chawla, T. C. & Biswas, N. R. Mycoplasma pneumoniae and its role in asthma. Postgrad. Med. J. 83, 100–104 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Waites, K. B. & Atkinson, T. P. The role of Mycoplasma in upper respiratory infections. Curr. Infect. Dis. Rep. 11, 198–206 (2009).

Article  PubMed  Google Scholar 

Chernova, O. A., Medvedeva, E. S., Mouzykantov, A. A., Baranova, N. B. & Chernov, V. M. Mycoplasmas and Their Antibiotic Resistance: The Problems and Prospects in Controlling Infections. Acta Nat. 8, 24–34 (2016).

Article  CAS  Google Scholar 

Taylor-Robinson, D. & Bébéar, C. Antibiotic susceptibilities of mycoplasmas and treatment of mycoplasmal infections. J. Antimicrob. Chemother. 40, 622–630 (1997).

Article  CAS  PubMed  Google Scholar 

Waites, K. B. et al. Macrolide-Resistant Mycoplasma pneumoniae in the United States as Determined from a National Surveillance Program. J. Clin. Microbiol. 57, e00968–19 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Zheng, X. et al. Macrolide-Resistant Mycoplasma pneumoniae, United States. Emerg. Infect. Dis. 21, 1470–1472 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo, L., Wu, Y. & You, X. Mycoplasma lipoproteins and Toll-like receptors. J. Zhejiang Univ. Sci. B 10, 67–76 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimizu, T., Kida, Y. & Kuwano, K. Triacylated lipoproteins derived from Mycoplasma pneumoniae activate nuclear factor-κB through toll-like receptors 1 and 2. Immunology 121, 473–483 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimizu, T., Kida, Y. & Kuwano, K. A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLR1, TLR2, and TLR6. J. Immunol. 175, 4641–4646 (2005).

Article  CAS  PubMed  Google Scholar 

Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001).

Article  CAS  PubMed  Google Scholar 

Takeda, K., Takeuchi, O. & Akira, S. Recognition of lipopeptides by Toll-like receptors. J. Endotoxin. Res. 8, 459–463 (2002).

Article  CAS  PubMed  Google Scholar 

Kang, J. Y. et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31, 873–884 (2009).

Article  CAS  PubMed  Google Scholar 

Jin, M. S. et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).

Article  CAS  PubMed  Google Scholar 

Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285, 736–739 (1999).

Article  CAS  PubMed  Google Scholar 

Nguyen, M.-T. et al. Lipid moieties on lipoproteins of commensal and non-commensal staphylococci induce differential immune responses. Nat. Commun. 8, 2246 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Jin, B., Sun, T., Yu, X.-H., Yang, Y.-X. & Yeo, A. E. T. The Effects of TLR Activation on T-Cell Development and Differentiation. Clin. Dev. Immunol. 2012, 836485 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Smith, C. B., Friedewald, W. T. & Chanock, R. M. Inactivated Mycoplasma Pneumoniae Vaccine: Evaluation in Volunteers. JAMA 199, 353–358 (1967).

Article  CAS  PubMed  Google Scholar 

Szczepanek, S. M. et al. Vaccination of BALB/c mice with an avirulent Mycoplasma pneumoniae P30 mutant results in disease exacerbation upon challenge with a virulent strain. Infect. Immun. 80, 1007–1014 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cimolai, N., Cheong, A. C. H., Morrison, B. J. & Taylor, G. P. Mycoplasma pneumoniae reinfection and vaccination: protective oral vaccination and harmful immunoreactivity after re-infection and parenteral immunization. Vaccine 14, 1479–1483 (1996).

Article  CAS  PubMed  Google Scholar 

Kurai, D. et al. Mycoplasma pneumoniae extract induces an IL-17-associated inflammatory reaction in murine lung: implication for mycoplasmal pneumonia. Inflammation 36, 285–293 (2013).

Article  PubMed  Google Scholar 

Mara, A. B., Gavitt, T. D., Tulman, E. R., Geary, S. J. & Szczepanek, S. M. Lipid moieties of Mycoplasma pneumoniae lipoproteins are the causative factor of vaccine-enhanced disease. npj Vaccines 5, 1–5 (2020).

Article  Google Scholar 

Geary, S. J., Ryan, J. A., Forsyth, M. H. & Sasseville, V. Development of monoclonal antibodies for the detection of Mycoplasma pneumoniae. Mol. Cell Probes 7, 133–138 (1993).

Article  CAS  PubMed  Google Scholar 

Barlow, D. J., Edwards, M. S. & Thornton, J. M. Continuous and discontinuous protein antigenic determinants. Nature 322, 747–748 (1986).

Article  CAS  PubMed  Google Scholar 

Van Regenmortel, M. H. V. Antigenicity and Immunogenicity of Synthetic Peptides. Biologicals 29, 209–213 (2001).

Article  PubMed  Google Scholar 

Ahuja, A. et al. Depletion of B Cells in Murine Lupus: Efficacy and Resistance. J. Immunol. 179, 3351–3361 (2007).

Article  CAS  PubMed  Google Scholar 

Katzelnick, L. C. et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 358, 929–932 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kliks, S. C., Nisalak, A., Brandt, W. E., Wahl, L. & Burke, D. S. Antibody-Dependent Enhancement of Dengue Virus Growth in Human Monocytes as a Risk Factor for Dengue Hemorrhagic Fever. Am. J. Tropical Med. Hyg. 40, 444–451 (1989).

Article  CAS  Google Scholar 

Normile, D. Safety concerns derail dengue vaccination program. Science 358, 1514–1515 (2017).

Article  CAS  PubMed  Google Scholar 

Chin, J., Magoffin, R. L., Shearer, L. A., Schieble, J. H. & Lennette, E. H. Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population1. Am. J. Epidemiol. 89, 449–463 (1969).

Article  CAS  PubMed  Google Scholar 

Fulginiti, V. A. et al. Respiratory virus immunization: a field trial of two inactivated respiratory virus vaccines; an aqueous trivalent paratnfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine1. Am. J. Epidemiol. 89, 435–448 (1969).

Article  CAS  PubMed  Google Scholar 

Kapikian, A. Z., Mitchell, R. H., Chanock, R. M., Shvedoff, R. A. & Stewart, C. E. An epidemiologic study of altered clinical reactivity to respiratory syncytial (rs) virus infection in children previously vaccinated with an inactivated rs virus vaccine. Am. J. Epidemiol. 89, 405–421 (1969).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif