Recombineering using RecET-like recombinases from Xenorhabdus and its application in mining of natural products

Abbasi MN, Fu J, Bian X, Wang H, Zhang Y, Li A (2020) Recombineering for genetic engineering of natural product biosynthetic pathways. Trends Biotechnol 38(7):715–728. https://doi.org/10.1016/j.tibtech.2019.12.018

Article  CAS  PubMed  Google Scholar 

Alam K, Hao J, Zhang Y, Li A (2021) Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 49:107759. https://doi.org/10.1016/j.biotechadv.2021.107759

Article  CAS  PubMed  Google Scholar 

Bozhüyük KAJ, Zhou Q, Engel Y, Heinrich A, Pérez A, Bode HB (2016) Natural products from Photorhabdus and other Entomopathogenic bacteria. Curr Top Microbiol 402:55–79. https://doi.org/10.1007/82_2016_24

Article  CAS  Google Scholar 

Dinesh R, Srinivasan V, T ES, Anandaraj M, Srambikkal H (2017) Endophytic actinobacteria: diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Crit Rev Microbiol 43(5):546–566. https://doi.org/10.1080/1040841X.2016.1270895

Article  CAS  PubMed  Google Scholar 

Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Muller R, Stewart AF, Zhang Y (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30(5):440–446. https://doi.org/10.1038/nbt.2183

Article  CAS  PubMed  Google Scholar 

Hemalatha D, Prabhu S, Rani WB, Anandham R (2018) Isolation and characterization of toxins from Xenorhabdus nematophilus against Ferrisia virgata (Ckll.) on tuberose, Polianthes Tuberosa. Toxicon 146:42–49. https://doi.org/10.1016/j.toxicon.2018.03.012

Article  CAS  PubMed  Google Scholar 

Hu S, Fu J, Huang F, Ding X, Stewart AF, Xia L, Zhang Y (2014) Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system. Appl Microbiol Biotechnol 98(5):2165–2172. https://doi.org/10.1007/s00253-013-5412-x

Article  CAS  PubMed  Google Scholar 

Incedayi G, Cimen H, Ulug D, Touray M, Bode E, Bode HB, Orenlili Yaylagul E, Hazir S, Cakmak I (2021) Relative potency of a novel acaricidal compound from Xenorhabdus, a bacterial genus mutualistically associated with entomopathogenic nematodes. Sci Rep 11(1):11253. https://doi.org/10.1038/s41598-021-90726-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lefoulon E, Campbell N, Stock SP (2022) Identification of novel prophage regions in Xenorhabdus nematophila genome and gene expression analysis during phage-like particle induction. PeerJ 10:e12956. https://doi.org/10.7717/peerj.12956

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lesic B, Rahme LG (2008) Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol Biol 9:20. https://doi.org/10.1186/1471-2199-9-20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li B, Qiu D, Wang S (2021) Complete genome sequence data of Xenorhabdus budapestensis strain C72, a candidate biological control agent from China. Plant Dis 105(10):3276–3278. https://doi.org/10.1094/PDIS-04-21-0701-A

Article  PubMed  Google Scholar 

McErlean M, Liu X, Cui Z, Gust B, Van Lanen SG (2021) Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat Prod Rep 38(7):1362–1407. https://doi.org/10.1039/d0np00064g

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patil J, Linga V, Vijayakumar R, Subaharan K, Omprakash N, Bakthavatsalam N, Mhatre P, Sekhar J (2022) Biocontrol potential of Entomopathogenic nematodes for the sustainable management of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Pest Manag Sci. https://doi.org/10.1002/ps.6912

Richards GR, Goodrich-Blair H (2009) Masters of conquest and pillage: Xenorhabdus nematophila global regulators control transitions from virulence to nutrient acquisition. Cell Microbiol 11(7):1025–1033. https://doi.org/10.1111/j.1462-5822.2009.01322.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun Z, Deng A, Hu T, Wu J, Sun Q, Bai H, Zhang G, Wen T (2015) A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl Microbiol Biotechnol 99(12):5151–5162. https://doi.org/10.1007/s00253-015-6485-5

Article  CAS  PubMed  Google Scholar 

Swingle B, Bao Z, Markel E, Chambers A, Cartinhour S (2010) Recombineering using RecTE from Pseudomonas syringae. Appl Environ Microbiol 76(15):4960–4968. https://doi.org/10.1128/AEM.00911-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N, Backofen R, Bode HB (2017a) Photorhabdus-nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites. Environ Microbiol 19(1):119–129. https://doi.org/10.1111/1462-2920.13502

Article  CAS  PubMed  Google Scholar 

Tobias NJ, Wolff H, Djahanschiri B, Grundmann F, Kronenwerth M, Shi YM, Simonyi S, Grün P, Shapiro-Ilan D, Pidot SJ, Stinear TP, Ebersberger I, Bode HB (2017b) Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat Microbiol 2(12):1676–1685. https://doi.org/10.1038/s41564-017-0039-9

Article  CAS  PubMed  Google Scholar 

van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4(2):147–152. https://doi.org/10.1038/nmeth996

Article  CAS  PubMed  Google Scholar 

van Pijkeren JP, Britton RA (2012) High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res 40(10):e76. https://doi.org/10.1093/nar/gks147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Zhou H, Chen H, Jing X, Zheng W, Li R, Sun T, Liu J, Fu J, Huo L, Li YZ, Shen Y, Ding X, Muller R, Bian X, Zhang Y (2018) Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species. Proc Natl Acad Sci U S A 115(18):E4255–E4263. https://doi.org/10.1073/pnas.1720941115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei D, Wang M, Shi J, Hao J (2012) Red recombinase assisted gene replacement in Klebsiella pneumoniae. J Ind Microbiol Biotechnol 39(8):1219–1226. https://doi.org/10.1007/s10295-012-1117-x

Article  CAS  PubMed  Google Scholar 

Wolff H, Bode HB (2018) The benzodiazepine-like natural product tilivalline is produced by the entomopathogenic bacterium Xenorhabdus eapokensis. PLoS One 13(3):e0194297. https://doi.org/10.1371/journal.pone.0194297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xi X, Lu X, Zhang X, Bi Y, Li X, Yu Z (2019) Two novel cyclic depsipeptides xenematides F and G from the entomopathogenic bacterium Xenorhabdus budapestensis. J Antibiot 72(10):736–743. https://doi.org/10.1038/s41429-019-0203-y

Article  CAS  Google Scholar 

Yin J, Zhu H, Xia L, Ding X, Hoffmann T, Hoffmann M, Bian X, Müller R, Fu J, Stewart AF, Zhang Y (2015) A new recombineering system for Photorhabdus and Xenorhabdus. Nucleic Acids Res 43(6):e36–e36. https://doi.org/10.1093/nar/gku1336

Article  CAS  PubMed  Google Scholar 

Yin J, Zheng W, Gao Y, Jiang C, Shi H, Diao X, Li S, Chen H, Wang H, Li R, Li A, Xia L, Yin Y, Stewart AF, Zhang Y, Fu J (2019) Single-stranded DNA-binding protein and exogenous RecBCD inhibitors enhance phage-derived homologous recombination in Pseudomonas. iScience 14:1–14. https://doi.org/10.1016/j.isci.2019.03.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Buchholz F, Muyrers JP, AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128. https://doi.org/10.1038/2417

Article  CAS  PubMed  Google Scholar 

Zhang Y, Muyrers JP, Testa G, Stewart AF (2000) DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol 18(12):1314–1317. https://doi.org/10.1038/82449

Article  CAS  PubMed  Google Scholar 

Zheng W, Wang X, Zhou H, Zhang Y, Li A, Bian X (2020) Establishment of recombineering genome editing system in Paraburkholderia megapolitana empowers activation of silent biosynthetic gene clusters. Microb Biotechnol 13(2):397–405. https://doi.org/10.1111/1751-7915.13535

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif