Chitosan/starch beads as bioinoculants carrier: long-term survival of bacteria and plant growth promotion

Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136

Article  CAS  Google Scholar 

Bashan Y, De-Bashan LE (2015) Inoculant preparation and formulations for Azospirillum spp. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum. Springer, Switzerland, pp 469–485

Google Scholar 

Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. https://doi.org/10.1007/s11104-013-1956-x

Article  CAS  Google Scholar 

Basu A, Prasad P, Das SN, Kalam S, Sayyed R, Reddy M, El Enshasy HJS (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13(3):1140

Article  CAS  Google Scholar 

Borrajo MP, Mondino EA, Maroniche GA, Fernández M, Creus CM (2021) Potential of rhizobacteria native to Argentina for the control of Meloidogyne javanica. Rev Argent Microbiol 455:1–9. https://doi.org/10.1016/j.ram.2021.02.010

Article  Google Scholar 

Busscher HJ, van der Mei HC (2012) How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog 8(1):e1002440

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459. https://doi.org/10.1007/s00344-013-9362-4

Article  CAS  Google Scholar 

Combes-Meynet E, Pothier JF, Moënne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant Microbe Interact 24:271–284. https://doi.org/10.1094/MPMI-07-10-0148

Article  CAS  PubMed  Google Scholar 

Couillerot O, Combes-Meynet E, Pothier JF, Bellvert F, Challita E, Poirier M-A, Rohr R, Comte G, Moënne-Loccoz Y, Prigent-Combaret CJM (2011) The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Microbiology 157(6):1694–1705

Article  CAS  PubMed  Google Scholar 

Couillerot O, Ramírez-Trujillo A, Walker V, von Felten A, Jansa J, Maurhofer M, Défago G, Prigent-Combaret C, Comte G, Caballero-Mellado J (2013) Comparison of prominent Azospirillum strains in Azospirillum–Pseudomonas–Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97(10):4639–4649. https://doi.org/10.1007/s00253-012-4249-z

Article  CAS  PubMed  Google Scholar 

Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 93(6):2669–2680. https://doi.org/10.1007/s00253-011-3585-8

Article  CAS  PubMed  Google Scholar 

Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

Article  CAS  PubMed  Google Scholar 

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2011) InfoStat, versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar. Accessed 3 March 2022

Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149. https://doi.org/10.1080/713610853

Article  CAS  Google Scholar 

Herigstad B, Hamilton M, Heersink J (2001) How to optimize the drop plate method for enumerating bacteria. J Microbiol Methods 44(2):121–129

Article  CAS  PubMed  Google Scholar 

Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

Article  Google Scholar 

Horemans S, De Coninck K, Dressen R, Vlassak K, Somerville L, Greaves M (1987) Symbiotic nitrogen fixation. In: Somerville L, Greaves MP (eds) Pesticide effects on soil microflora. Taylor & Francis, London, pp 133–145

Google Scholar 

Janzen R, Rood S, Dormaar J, McGill W (1992) Azospirillum brasilense produces gibberellin in pure culture on chemically-defined medium and in co-culture on straw. Soil Biol Biochem 24(10):1061–1064

Article  CAS  Google Scholar 

Man M, Deen B, Dunfield KE, Wagner-Riddle C, Simpson MJ (2021) Altered soil organic matter composition and degradation after a decade of nitrogen fertilization in a temperate agroecosystem. Agric Ecosyst Environ 310:107305. https://doi.org/10.1016/j.agee.2021.107305

Article  CAS  Google Scholar 

Maroniche GA, Diaz PR, Borrajo MP, Valverde CF, Creus CM (2018) Friends or foes in the rhizosphere: traits of fluorescent Pseudomonas that hinder Azospirillum brasilense growth and root colonization. FEMS Microbiol Ecol 94(12):1–10. https://doi.org/10.1093/femsec/fiy202

Article  CAS  Google Scholar 

Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92(4):367–389. https://doi.org/10.1007/s10482-007-9167-1

Article  PubMed  Google Scholar 

Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact 21(7):1001–1009

Article  CAS  PubMed  Google Scholar 

Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33(1):85–88. https://doi.org/10.1128/aem.33.1.85-88.1977

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pagnussat LA, Salcedo F, Maroniche G, Keel C, Valverde C, Creus CM (2016) Interspecific cooperation: enhanced growth, attachment and strain-specific distribution in biofilms through Azospirillum brasilense-Pseudomonas protegens co-cultivation. FEMS Microbiol Lett 363(20):fnw238

Article  PubMed  Google Scholar 

Pereira LC, de Carvalho C, Suzukawa AK, Correia LV, Pereira RC, dos Santos RF, Braccini AL, FernandesOsipi EA (2020) Toxicity of seed-applied pesticides to Azospirillum spp.: an approach based on bacterial count in the maize rhizosphere. Seed Sci Technol 48(2):241–246

Article  Google Scholar 

Perez JJ, Francois NJ (2016) Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydr Polym 148:134–142

Article  CAS  PubMed  Google Scholar 

Perez JJ, Francois NJ, Maroniche GA, Borrajo MP, Pereyra MA, Creus CM (2018) A novel, green, low-cost chitosan-starch hydrogel as potential delivery system for plant growth-promoting bacteria. Carbohydr Polym 202:409–417

Article  CAS  PubMed  Google Scholar 

Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4–5):319–339

Article  PubMed  Google Scholar 

Santos MS, Rondina ABL, Nogueira MA, Hungria M (2020) Compatibility of Azospirillum brasilense with pesticides used for treatment of maize seeds. Int J Microbiol 2020:8833879. https://doi.org/10.1155/2020/8833879

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

Article  CAS  PubMed  Google Scholar 

Tupa M, Maldonado L, Vázquez A, Foresti ML (2013) Simple organocatalytic route for the synthesis of starch esters. Carbohydr Polym 98(1):349–357

Article  CAS  PubMed  Google Scholar 

Tuson HH, Auer GK, Renner LD, Hasebe M, Tropini C, Salick M, Crone WC, Gopinathan A, Huang KC, Weibel DB (2012) Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity. Mol Microbiol 4(5):874–891

Article  Google Scholar 

留言 (0)

沒有登入
gif