Engineering D-glucose utilization in Azospirillum brasilense Sp7 promotes rice root colonization

Bacilio-Jiménez M, Aguilar-Flores S, del Valle MV, Pérez A, Zepeda A, Zenteno E (2001) Endophytic bacteria in rice seeds inhibit early colonization of roots by Azospirillum brasilense. Soil Biol Biochem 33:167–172. https://doi.org/10.1016/s0038-0717(00)00126-7

Article  Google Scholar 

Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277. https://doi.org/10.1023/a:1022888900465

Article  Google Scholar 

Bais HP, Loyola-Vargas VM, Flores HE, Vivanco JM (2001) Root-specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell Dev Biol – Plant lant 37:730–741. https://doi.org/10.1007/s11627-001-0122-y

Article  CAS  Google Scholar 

Baldani JI, Baldani VL, Seldin L, Döbereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Evol Microbiol 36:86–93. https://doi.org/10.1099/00207713-36-1-86

Article  CAS  Google Scholar 

Barriuso J, Ramos Solano B, Fray RG, Cámara M, Hartmann A, Gutiérrez Mañero FJ (2008) Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol J 6:442–452. https://doi.org/10.1111/j.1467-7652.2008.00331.x

Article  CAS  PubMed  Google Scholar 

Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. https://doi.org/10.1007/s11104-013-1956-x

Article  CAS  Google Scholar 

Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9.

Article  CAS  PubMed  Google Scholar 

Boulanger A, Déjean G, Lautier M, Glories M, Zischek C, Arlat M, Lauber E (2010) Identification and regulation of the N-acetyl glucosamine utilization pathway of the plant pathogenic bacterium Xanthomonas campestris pv. campestris. J Bacteriol 192:1487–1497. https://doi.org/10.1128/jb.01418-09

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41. https://doi.org/10.1007/s11104-014-2131-8

Article  CAS  Google Scholar 

Cambell R, Greves M (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley & Sons, Chichester, pp 11–34

Cassán F, Coniglio A, López G, Molina R, Nievas S, de Carlan C, Donadio F, Torres D, Rosas S, OliveraPedrosa F, de Souza E, DíazZorita M, de-Bashan L, Mora V (2020) Everything you must know about Azospirillum and its impact on agriculture and beyond. Biol Fertil Soils 56:461–479. https://doi.org/10.1007/s00374-020-01463-y

Article  Google Scholar 

Deshmukh Y, KhareP PD (2016) Rhizobacteria elevate principal basmati aroma compound accumulation in rice variety. Rhizosphere 1:53–57. https://doi.org/10.1016/j.rhisph.2016.07.001

Article  Google Scholar 

Deutscher J, Aké FM, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P (2014) The bacterial phosphoenolpyruvate: carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78:231–256. https://doi.org/10.1128/mmbr.00001-14

Article  PubMed  PubMed Central  Google Scholar 

Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol 28:871–879. https://doi.org/10.1071/pp01074

Article  Google Scholar 

Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149. https://doi.org/10.1080/713610853

Article  CAS  Google Scholar 

DuBois M, Gilles KA, Hamilton JK, Rebers PA, Fred S (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

Article  CAS  Google Scholar 

Estabrook EM, Yoder JI (1998) Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol 116:1–7. https://doi.org/10.1104/pp.116.1.1

Article  CAS  PubMed Central  Google Scholar 

Etesami H, Alikhani HA (2016) Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere 2:5–12. https://doi.org/10.1016/j.rhisph.2016.09.003

Article  Google Scholar 

Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:73. https://doi.org/10.1186/s13568-018-0608-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Futamata H, Sakai M, Ozawa H, Urashima Y, Sueguchi T, Matsuguchi T (1998) Chemotactic response to amino acids of fluorescent pseudomonads isolated from spinach roots grown in soils with different salinity levels. Soil Sci Plant Nutr 44:1–7. https://doi.org/10.1080/00380768.1998.10414421

Article  CAS  Google Scholar 

Gaugué I, Oberto J, Putzer H, Plumbridge J (2013) The use of amino sugars by Bacillus subtilis: presence of a unique operon for the catabolism of glucosamine. PLoS ONE 8(5):e63025. https://doi.org/10.1371/journal.pone.0063025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goebel EM, Krieg NR (1984) D-Fructose catabolism in Azospirillum brasilense and Azospirillum lipoferum. J Bacteriol 159:86–92. https://doi.org/10.1128/jb.159.1.86-92.1984

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ. No. 347, California Agricultural Experiment Station

Hozore E, Alexander M (1991) Bacterial characteristics important to rhizosphere competence. Soil Biol Biochem 23:717–723. https://doi.org/10.1016/0038-0717(91)90140-f

Article  Google Scholar 

Kloepper JW, Schroth MN (1981) Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71:642–644. https://doi.org/10.1094/phyto-71-642

Article  Google Scholar 

Korgaonkar AK, Whiteley M (2011) Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J Bacteriol 193:909–917. https://doi.org/10.1128/jb.01175-10

Article  CAS  PubMed  Google Scholar 

Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176. https://doi.org/10.1016/0378-1119(95)00584-1

Article  CAS  PubMed  Google Scholar 

Loh WH, Randles CI, Sharp WR, Miller RH (1984) Intermediary carbon metabolism of Azospirillum brasilense. J Bacteriol 158:264–268. https://doi.org/10.1128/jb.158.1.264-268.1984

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10. https://doi.org/10.1007/bf00011685

Article  CAS  Google Scholar 

Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897. https://doi.org/10.1128/aem.70.10.5891-5897.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Drets G, Del Gallo M, Burpee C, Burris RH (1984) Catabolism of carbohydrates and organic acids and expression of nitrogenase by azospirilla. J Bacteriol 159:80–85. https://doi.org/10.1128/jb.159.1.80-85.1984

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morales VM, Bäckman A, Bagdasarian M (1991) A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97:39–47. https://doi.org/10.1016/0378-1119(91)90007-x

Article  CAS  PubMed  Google Scholar 

Moye ZD, Zeng L, Burne RA (2014) Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans. J Oral Microbiol 6:24878. https://doi.org/10.3402/jom.v6.24878

Article  Google Scholar 

Nur I, Steinitz YL, Okon Y, Henis Y (1981) Carotenoid composition and function in nitrogen-fixing bacteria of the genus Azospirillum. J Gen Microbiol 122:27–32. https://doi.org/10.1099/00221287-122-1-27

Article  CAS  Google Scholar 

Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601. https://doi.org/10.1016/0038-0717(94)90311-5

Article  CAS  Google Scholar 

Raaijmakers JM, Sluis LVD, Bakker PA, Schippers B, Koster M, Weisbeek PJ (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135. https://doi.org/10.1139/m95-017

Article  CAS  Google Scholar 

Reinhold B, Hurek T, Fendrik I (1985) Strain-specific chemotaxis of Azospirillum spp. J Bacteriol 162:190–195. https://doi.org/10.1128/jb.162.1.190-195.1985

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saier MHJ (2015) The bacterial phosphotransferase system: new frontiers 50 years after its discovery. J Mol Microbiol Biotechnol 25:73–78. https://doi.org/10.1159/000381215

Article  CAS  PubMed  Google Scholar 

Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda MC, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008

Article  CAS  PubMed  Google Scholar 

Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791. https://doi.org/10.1038/nbt1183-784

留言 (0)

沒有登入
gif