Forthcoming complications in recovered COVID-19 patients with COPD and asthma; possible therapeutic opportunities

Bagheri HS, Karimipour M, Heidarzadeh M, Rajabi H, Sokullu E, Rahbarghazi R. Does the global outbreak of COVID-19 or other viral diseases threaten the stem cell reservoir inside the body? Stem Cell Rev Rep. 2021;17(1):214–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gianotti R, et al. COVID-19-related dermatosis in November 2019: could this case be Italy’s patient zero. Br J Dermatol. 2021;184(5):970–1.

Article  CAS  PubMed  Google Scholar 

Marhl M, et al. Diabetes and metabolic syndrome as risk factors for COVID-19. Diabetes Metab Syndr. 2020;14(4):671–7.

Article  PubMed  PubMed Central  Google Scholar 

Leung JM, et al. Covid-19 and COPD. 2020. 56(2).

Alqahtani JS, et al. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: a rapid systematic review and meta-analysis. PLoS ONE. 2020;15(5):e0233147.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Busse WW, Lemanske RF Jr, Gern JEJ. Role of viral respiratory infections in asthma and asthma exacerbations. The Lancet. 2010;376(9743):826–34.

Article  Google Scholar 

Abrams EM, W’t Jong G, Yang CLJC. Asthma and COVID-19. CMAJ. 2020;192(20):551.

Article  Google Scholar 

Bagheri HS, et al. Does the global outbreak of COVID-19 or other viral diseases threaten the stem cell reservoir inside the body? Stem Cell Rev Rep. 2021;17(1):214–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, et al. Safety of mesenchymal stem cells for clinical application. Stem Cells Int. 2012;6:66.

Google Scholar 

Sanyaolu A, et al. Comorbidity and its impact on patients with COVID-19. SN Comp Clin Med. 2020;66:1–8.

Google Scholar 

Cao XJ. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20(5):269–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

V’kovski P, et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–70.

Article  PubMed  Google Scholar 

Carcaterra M, Caruso C. Alveolar epithelial cell type II as main target of SARS-CoV-2 virus and COVID-19 development via NF-Kb pathway deregulation: a physio-pathological theory. Med Hypoth. 2021;146:110412–110412.

Article  CAS  Google Scholar 

Wrapp D, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heurich A, et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2):1293–307.

Article  PubMed  PubMed Central  Google Scholar 

Hoffmann M, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020.181(2):271–80.e8.

Zheng Y-Y, et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simmons G, et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci. 2005;102(33):11876–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Padmanabhan P, Desikan R, Dixit NM. Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection. PLoS Comput Biol. 2020;16(12):100–8461.

Article  Google Scholar 

Wang K, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. Biorxiv. 2020;6:66.

Google Scholar 

Cantuti-Castelvetri L, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clausen TM, et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell. 2020;183(4):1043–57.e15.

Sigrist CJ, Bridge A, Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res. 2020;177:104759.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo Y-J, et al. ACE2 overexpression inhibits angiotensin II-induced monocyte chemoattractant protein-1 expression in macrophages. Arch Med Res. 2008;39(2):149–54.

Article  CAS  PubMed  Google Scholar 

Mollica V, Rizzo A, Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020;16(27):2029–33.

Article  CAS  PubMed  Google Scholar 

Li G, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guan W, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.

Article  CAS  PubMed  Google Scholar 

Wu C, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Internal Med. 2020;180(7):934–43.

Article  CAS  Google Scholar 

De Wit E, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–34.

Article  PubMed  PubMed Central  Google Scholar 

Rodriguez IJ, et al. Human immune response to SARS-CoV-2: What is known? A scoping review. Infection. 2020;24(3):26–35.

Article  Google Scholar 

Moore JB, June CHJS. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473–4.

Article  CAS  PubMed  Google Scholar 

Hammad H, Lambrecht BN. The basic immunology of asthma. Cell. 2021;184(6):1469–85.

Article  CAS  PubMed  Google Scholar 

Eyerich S, et al. New biological treatments for asthma and skin allergies. Allergy. 2020;75(3):546–60.

Article  PubMed  Google Scholar 

Cockcroft DW. Environmental causes of asthma. In: Seminars in respiratory and critical care medicine. Thieme Medical Publishers; 2018.

Arora P, Ansari S. Role of various mediators in inflammation of asthmatic airways. Asthma-Biological Evidences; 2019.

Bousquet J, et al. Eosinophilic inflammation in asthma. N Engl J Med. 1990;323(15):1033–9.

Article  CAS  PubMed  Google Scholar 

Suzuki Y, et al. Airway basophils are increased and activated in eosinophilic asthma. Allergy. 2017;72(10):1532–9.

Article  CAS  PubMed  Google Scholar 

Herd C, Page C. Pulmonary immune cells in health and disease: platelets. Eur Respir J. 1994;7(6):1145–60.

CAS  PubMed  Google Scholar 

Willart M, Lambrecht B. The danger within: endogenous danger signals, atopy and asthma. Clin Exp Allergy. 2009;39(1):12–9.

Article  CAS  PubMed  Google Scholar 

Woodruff PG, et al. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am J Respir Crit Care Med. 2004;169(9):1001–6.

Article  PubMed  Google Scholar 

Ingram JL, et al. Airway fibroblasts in asthma manifest an invasive phenotype. Am J Respir Crit Care Med. 2011;183(12):1625–32.

Article  PubMed  PubMed Central  Google Scholar 

Gaurav R, Agrawal DK. Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol. 2013;9(10):899–919.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuruvilla ME, Lee F, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56(2):219–33.

Article  PubMed  PubMed Central  Google Scholar 

Salazar F, Ghaemmaghami A. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. Front Immunol. 2013;4:356.

Article  PubMed  PubMed Central  Google Scholar 

Liu YJ. TSLP in epithelial cell and dendritic cell cross talk. Adv Immunol. 2009;101:1–25.

Article  CAS 

留言 (0)

沒有登入
gif