Velcrin-induced selective cleavage of tRNALeu(TAA) by SLFN12 causes cancer cell death

de Waal, L. et al. Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics. Nat. Chem. Biol. 12, 102–108 (2016).

Article  PubMed  Google Scholar 

Garvie, C. W. et al. Structure of PDE3A–SLFN12 complex reveals requirements for activation of SLFN12 RNase. Nat. Commun. 12, 4375 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, X. et al. Mechanistic insights into cancer cell killing through interaction of phosphodiesterase 3A and Schlafen family member 12. J. Biol. Chem. 295, 3431–3446 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ai, Y. et al. An alkaloid initiates phosphodiesterase 3A-Schlafen 12 dependent apoptosis without affecting the phosphodiesterase activity. Nat. Commun. 11, 3236 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

An, R. et al. PDE3A inhibitor anagrelide activates death signaling pathway genes and synergizes with cell death-inducing cytokines to selectively inhibit cancer cell growth. Am. J. Cancer Res. 9, 1905–1921 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Lewis, T. A. et al. Optimization of PDE3A modulators for SLFN12-dependent cancer cell killing. ACS Med. Chem. Lett. 10, 1537–1542 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nazir, M. et al. Targeting tumor cells based on phosphodiesterase 3A expression. Exp. Cell. Res. 361, 308–315 (2017).

Article  CAS  PubMed  Google Scholar 

Corsello, S. M. et al. Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, D. et al. Estrogen-related hormones induce apoptosis by stabilizing Schlafen-12 protein turnover. Mol. Cell 75, 1103–1116 (2019).

Article  CAS  PubMed  Google Scholar 

Chen, J. et al. Structure of PDE3A–SLFN12 complex and structure-based design for a potent apoptosis inducer of tumor cells. Nat. Commun. 12, 6204 (2021).

Article  PubMed  PubMed Central  Google Scholar 

de la Casa-Esperon, E. From mammals to viruses: the Schlafen genes in developmental, proliferative and immune processes. Biomol. Concepts 2, 159–169 (2011).

Article  PubMed  Google Scholar 

Puck, A. et al. Expression and regulation of Schlafen (SLFN) family members in primary human monocytes, monocyte-derived dendritic cells and T cells. Results Immunol. 5, 23–32 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Li, M. et al. DNA damage-induced cell death relies on SLFN11-dependent cleavage of distinct type II tRNAs. Nat. Struct. Mol. Biol. 25, 1047–1058 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Pisareva, V. P., Muslimov, I. A., Tcherepanov, A. & Pisarev, A. V. Characterization of novel ribosome-associated endoribonuclease SLFN14 from rabbit reticulocytes. Biochemistry 54, 3286–3301 (2015).

Article  CAS  PubMed  Google Scholar 

Yang, J. Y. et al. Structure of Schlafen13 reveals a new class of tRNA/rRNA-targeting RNase engaged in translational control. Nat. Commun. 9, 1165 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Metzner, F. J., Huber, E., Hopfner, K. P. & Lammens, K. Structural and biochemical characterization of human Schlafen 5. Nucleic Acids Res. 50, 1147–1161 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson, D. N. & Doudna Cate, J. H. The structure and function of the eukaryotic ribosome. Cold Spring Harb. Perspect. 4, a011536 (2012).

Google Scholar 

Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

Article  PubMed  Google Scholar 

Hein, C. D., Liu, X. M. & Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res. 25, 2216–2230 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iordanov, M. S. et al. Ribotoxic stress response: activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the α-sarcin/ricin loop in the 28S rRNA. Mol. Cell. Biol. 17, 3373–3381 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, C. C., Peterson, A., Zinshteyn, B., Regot, S. & Green, R. Ribosome collisions trigger general stress responses to regulate cell fate. Cell 182, 404–416 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivanov, P., Emara, M. M., Villen, J., Gygi, S. P. & Anderson, P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 43, 613–623 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zoppoli, G. et al. Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc. Natl Acad. Sci. USA 109, 15030–15035 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murai, J. et al. SLFN11 blocks stressed replication forks independently of ATR. Mol. Cell 69, 371–384 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malone, D., Lardelli, R. M., Li, M. & David, M. Dephosphorylation activates the interferon-stimulated Schlafen family member 11 in the DNA damage response. J. Biol. Chem. 294, 14674–14685 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Yan, B. et al. Multiple PDE3A modulators act as molecular glues promoting PDE3A–SLFN12 interaction and induce SLFN12 dephosphorylation and cell death. Cell Chem. Biol. 29, 958–969 (2022).

Article  CAS  PubMed  Google Scholar 

Katsoulidis, E. et al. Role of interferon α (IFN α)-inducible Schlafen-5 in regulation of anchorage-independent growth and invasion of malignant melanoma cells. J. Biol. Chem. 285, 40333–40341 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kane, M. et al. Identification of interferon-stimulated genes with antiretroviral activity. Cell Host Microbe 20, 392–405 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, E. T. et al. Comparative proteomics identifies Schlafen 5 (SLFN5) as a herpes simplex virus restriction factor that suppresses viral transcription. Nat. Microbiol. 6, 234–245 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, M. et al. Codon-usage-based inhibition of HIV protein synthesis by human Schlafen 11. Nature 491, 125–128 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seong, R. K. et al. Schlafen 14 (SLFN14) is a novel antiviral factor involved in the control of viral replication. Immunobiology 222, 979–988 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

Article  CAS  PubMed  Google Scholar 

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

Article  CAS 

留言 (0)

沒有登入
gif