Small-molecule inhibition of the archetypal UbiB protein COQ8

Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

Article  CAS  PubMed  Google Scholar 

Dar, A. C. & Shokat, K. M. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu. Rev. Biochem. 80, 769–795 (2011).

Article  CAS  PubMed  Google Scholar 

Cohen, P., Cross, D. & Jänne, P. A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov. 20, 551–569 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Attwood, M. M., Fabbro, D., Sokolov, A. V., Knapp, S. & Schiöth, H. B. Trends in kinase drug discovery: targets, indications and inhibitor design. Nat. Rev. Drug Discov. 20, 839–861 (2021).

Article  CAS  PubMed  Google Scholar 

Kung, J. E. & Jura, N. Prospects for pharmacological targeting of pseudokinases. Nat. Rev. Drug Discov. 18, 501–526 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Oprea, T. I. et al. Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 17, 317–332 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leonard, C. J., Aravind, L. & Koonin, E. V. Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res. 8, 1038–1047 (1998).

Article  CAS  PubMed  Google Scholar 

Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lundquist, P. K., Davis, J. I. & van Wijk, K. J. ABC1K atypical kinases in plants: filling the organellar kinase void. Trends Plant Sci. 17, 546–555 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Traschütz, A. et al. Clinico‐genetic, imaging and molecular delineation of COQ8A‐ataxia: a multicenter study of 59 patients. Ann. Neurol. 88, 251–263 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Stefely, J. A. et al. Cerebellar ataxia and coenzyme Q deficiency through loss of unorthodox kinase activity. Mol. Cell 63, 608–620 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashraf, S. et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J. Clin. Invest. 123, 5179–5189 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poon, W. W. et al. Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis. J. Bacteriol. 182, 5139–5146 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Do, T. Q., Hsu, A. Y., Jonassen, T., Lee, P. T. & Clarke, C. F. A defect in coenzyme Q biosynthesis is responsible for the respiratory deficiency in Saccharomyces cerevisiae abc1 mutants. J. Biol. Chem. 276, 18161–18168 (2001).

Article  CAS  PubMed  Google Scholar 

Stefely, J. A. & Pagliarini, D. J. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem. Sci. 42, 824–843 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stefely, J. A. et al. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis. Mol. Cell 57, 83–94 (2015).

Article  CAS  PubMed  Google Scholar 

Reidenbach, A. G. et al. Conserved lipid and small-molecule modulation of COQ8 reveals regulation of the ancient kinase-like UbiB family. Cell Chem. Biol. 25, 154–165 (2018).

Article  CAS  PubMed  Google Scholar 

Asquith, C. R. M., Murray, N. H. & Pagliarini, D. J. ADCK3/COQ8A: the choice target of the UbiB protein kinase-like family. Nat. Rev. Drug Discov. 18, 815 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murray, N. H. et al. 2-Propylphenol allosterically modulates COQ8A to enhance ATPase activity. ACS Chem. Biol. 17, 2031–2038 (2022).

Article  CAS  PubMed  Google Scholar 

Asquith, C. R. M. et al. SGC-GAK-1: a chemical probe for cyclin G associated kinase (GAK). J. Med. Chem. 62, 2830–2836 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wells, C. I. et al. The kinase chemogenomic set (KCGS): an open science resource for kinase vulnerability identification. Int. J. Mol. Sci. 22, 566 (2021).

Article  CAS  PubMed Central  Google Scholar 

Robers, M. B. et al. Target engagement and drug residence time can be observed in living cells with BRET. Nat. Commun. 6, 10091 (2015).

Article  CAS  PubMed  Google Scholar 

Vasta, J. D. et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem. Biol. 25, 206–214 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lagier-Tourenne, C. et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am. J. Hum. Genet. 82, 661–672 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fonseca, L. V. et al. Mutations in COQ8B (ADCK4) found in patients with steroid-resistant nephrotic syndrome alter COQ8B function. Hum. Mutat. 39, 406–414 (2017).

Article  Google Scholar 

Rensvold, J. W. et al. Defining mitochondrial protein functions through deep multiomic profiling. Nature 606, 382–388 (2022).

Article  CAS  PubMed  Google Scholar 

Zielonka, J. et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 117, 10043–10120 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith, R. A. J., Porteous, C. M., Gane, A. M. & Murphy, M. P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl Acad. Sci. USA 100, 5407–5412 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trionnaire, S. L. et al. The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3 H -1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). MedChemComm 5, 728–736 (2014).

Article  Google Scholar 

Trnka, J., Elkalaf, M. & Anděl, M. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak. PLoS ONE 10, e0121837 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Reily, C. et al. Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol. 1, 86–93 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duncan, J. S. et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149, 307–321 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asquith, C. R. M. et al. Identification and optimization of 4-anilinoquinolines as inhibitors of cyclin G associated kinase. ChemMedChem 13, 48–66 (2018).

Article  CAS  PubMed  Google Scholar 

Asquith, C. R. M. et al. Design of a cyclin G associated kinase (GAK)/epidermal growth factor receptor (EGFR) inhibitor set to interrogate the relationship of EGFR and GAK in chordoma. J. Med. Chem. 62, 4772–4778 (2019).

Article  CAS  PubMed  Google Scholar 

Asquith, C. R. M. et al. Identification of 4-anilinoquin(az)oline as a cell-active protein kinase novel 3 (PKN3) inhibitor chemotype. ChemMedChem 17, e202200161 (2022).

Asquith, C. R. M. et al. Design and analysis of the 4‐anilinoquin(az)oline kinase inhibition profiles of GAK/SLK/STK10 using quantitative structure–activity relationships. ChemMedChem 15, 26–49 (2020).

Article  CAS  PubMed  Google Scholar 

Serafim, R. A. M., Elkins, J. M., Zuercher, W. J., Laufer, S. A. & Gehringer, M. Chemical probes for understudied kinases: challenges and opportunities. J. Med. Chem. 65, 1132–1170 (2022).

Article 

留言 (0)

沒有登入
gif