Degree centrality and functional connections in presbycusis with and without cognitive impairments

Albers, M. W., Gilmore, G. C., Kaye, J., Murphy, C., Wingfield, A., Bennett, D. A., Boxer, A. L., Buchman, A. S., Cruickshanks, K. J., Devanand, D. P., Duffy, C. J., Gall, C. M., Gates, G. A., Granholm, A. C., Hensch, T., Holtzer, R., Hyman, B. T., Lin, F. R., McKee, A. C., …, & Zhang, L. I. (2015). At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimer’s & Dementia, 11(1), 70–98. https://doi.org/10.1016/j.jalz.2014.04.514

Bidelman, G. M., Price, C. N., Shen, D., Arnott, S. R., & Alain, C. (2019). Afferent-efferent connectivity between auditory brainstem and cortex accounts for poorer speech-in-noise comprehension in older adults. Hearing Research, 382, 107795. https://doi.org/10.1016/j.heares.2019.107795

Article  PubMed  PubMed Central  Google Scholar 

Boucher, S., Tai, F. W. J., Delmaghani, S., Lelli, A., Singh-Estivalet, A., Dupont, T., Niasme-Grare, M., Michel, V., Wolff, N., Bahloul, A., Bouyacoub, Y., Bouccara, D., Fraysse, B., Deguine, O., Collet, L., Thai-Van, H., Ionescu, E., Kemeny, J. L., Giraudet, F., …, & Petit, C. (2020). Ultrarare heterozygous pathogenic variants of genes causing dominant forms of early-onset deafness underlie severe presbycusis. Proc Natl Acad Sci U S A, 117(49), 31278–31289. https://doi.org/10.1073/pnas.2010782117

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., Andrews-Hanna, J. R., Sperling, R. A., & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 1860–1873. https://doi.org/10.1523/JNEUROSCI.5062-08.2009

Article  CAS  PubMed  Google Scholar 

Chen, J., Hu, B., Qin, P., Gao, W., Liu, C., Zi, D., Ding, X., Yu, Y., Cui, G., & Lu, L. (2020a). Altered brain activity and functional connectivity in unilateral sudden sensorineural hearing loss. Neural Plasticity, 2020, 9460364. https://doi.org/10.1155/2020/9460364

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y. C., Yong, W., Xing, C., Feng, Y., Haidari, N. A., Xu, J. J., Gu, J. P., Yin, X., & Wu, Y. (2020b). Directed functional connectivity of the hippocampus in patients with presbycusis. Brain Imaging and Behavior, 14(3), 917–926. https://doi.org/10.1007/s11682-019-00162-z

Article  PubMed  Google Scholar 

Du, Y., Buchsbaum, B. R., Grady, C. L., & Alain, C. (2016). Increased activity in frontal motor cortex compensates impaired speech perception in older adults. Nature Communications, 7, 12241. https://doi.org/10.1038/ncomms12241

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eickhoff, S. B., Lotze, M., Wietek, B., Amunts, K., Enck, P., & Zilles, K. (2006). Segregation of visceral and somatosensory afferents: An fMRI and cytoarchitectonic mapping study. NeuroImage, 31(3), 1004–1014. https://doi.org/10.1016/j.neuroimage.2006.01.023

Article  PubMed  Google Scholar 

Fitzhugh, M. C., Hemesath, A., Schaefer, S. Y., Baxter, L. C., & Rogalsky, C. (2019). Functional connectivity of Heschl’s Gyrus associated with age-related hearing loss: A resting-state fMRI study. Frontiers in Psychology, 10, 2485. https://doi.org/10.3389/fpsyg.2019.02485

Article  PubMed  PubMed Central  Google Scholar 

Garcia-Esparcia, P., Koneti, A., Rodriguez-Oroz, M. C., Gago, B., Del Rio, J. A., & Ferrer, I. (2018). Mitochondrial activity in the frontal cortex area 8 and angular gyrus in Parkinson’s disease and Parkinson’s disease with dementia. Brain Pathology, 28(1), 43–57. https://doi.org/10.1111/bpa.12474

Article  CAS  PubMed  Google Scholar 

Golub, J. S., Sharma, R. K., Rippon, B. Q., Brickman, A. M., & Luchsinger, J. A. (2021). The association between early age-related hearing loss and brain beta-Amyloid. The Laryngoscope, 131(3), 633–638. https://doi.org/10.1002/lary.28859

Article  CAS  PubMed  Google Scholar 

Guo, Z., Liu, X., Hou, H., Wei, F., Liu, J., & Chen, X. (2016). Abnormal degree centrality in Alzheimer’s disease patients with depression: A resting-state functional magnetic resonance imaging study. Experimental Gerontology, 79, 61–66. https://doi.org/10.1016/j.exger.2016.03.017

Article  PubMed  Google Scholar 

Henderson-Sabes, J., Shang, Y., Perez, P. L., Chang, J. L., Pross, S. E., Findlay, A. M., Mizuiri, D., Hinkley, L. B., Nagarajan, S. S., & Cheung, S. W. (2019). Corticostriatal functional connectivity of bothersome tinnitus in single-sided deafness. Science and Reports, 9(1), 19552. https://doi.org/10.1038/s41598-019-56127-1

Article  CAS  Google Scholar 

Hua, K., Wang, T., Li, C., Li, S., Ma, X., Li, C., Li, M., Fu, S., Yin, Y., Wu, Y., Liu, M., Yu, K., Fang, J., Wang, P., & Jiang, G. (2018). Abnormal degree centrality in chronic users of codeine-containing cough syrups: A resting-state functional magnetic resonance imaging study. Neuroimage Clin, 19, 775–781. https://doi.org/10.1016/j.nicl.2018.06.003

Article  PubMed  PubMed Central  Google Scholar 

Huang, R., Wang, A., Ba, X., Zhang, G., Li, C., & Liu, Q. (2020). Association functional MRI studies of resting-state amplitude of low frequency fluctuation and voxel-based morphometry in patients with occupational noise-induced hearing Loss. Journal of Occupational and Environmental Medicine, 62(7), 472–477. https://doi.org/10.1097/JOM.0000000000001869

Article  PubMed  Google Scholar 

Jaeger, J. (2018). Digit symbol substitution test: The case for sensitivity over specificity in neuropsychological testing. Journal of Clinical Psychopharmacology, 38(5), 513–519. https://doi.org/10.1097/JCP.0000000000000941

Article  PubMed  PubMed Central  Google Scholar 

Jafari, Z., Kolb, B. E., & Mohajerani, M. H. (2019). Age-related hearing loss and tinnitus, dementia risk, and auditory amplification outcomes. Ageing Research Reviews, 56, 100963. https://doi.org/10.1016/j.arr.2019.100963

Article  PubMed  Google Scholar 

Jastorff, J., De Winter, F. L., Van den Stock, J., Vandenberghe, R., Giese, M. A., & Vandenbulcke, M. (2016). Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: Insights from behavioral variant frontotemporal dementia. Human Brain Mapping, 37(12), 4472–4486. https://doi.org/10.1002/hbm.23322

Article  PubMed  PubMed Central  Google Scholar 

Job, A., Pons, Y., Lamalle, L., Jaillard, A., Buck, K., Segebarth, C., & Delon-Martin, C. (2012). Abnormal cortical sensorimotor activity during “Target” sound detection in subjects with acute acoustic trauma sequelae: An fMRI study. Brain and Behavior: A Cognitive Neuroscience Perspective, 2(2), 187–199. https://doi.org/10.1002/brb3.21

Article  Google Scholar 

Kan, Y., Wang, W., Zhang, S. X., Ma, H., Wang, Z. C., & Yang, J. G. (2019). Neural metabolic activity in idiopathic tinnitus patients after repetitive transcranial magnetic stimulation. World J Clin Cases, 7(13), 1582–1590. https://doi.org/10.12998/wjcc.v7.i13.1582

Article  PubMed  PubMed Central  Google Scholar 

Kukull, W. A., Higdon, R., Bowen, J. D., McCormick, W. C., Teri, L., Schellenberg, G. D., van Belle, G., Jolley, L., & Larson, E. B. (2002). Dementia and Alzheimer disease incidence: A prospective cohort study. Archives of Neurology, 59(11), 1737–1746. https://doi.org/10.1001/archneur.59.11.1737

Article  PubMed  Google Scholar 

Larson, P. S., & Cheung, S. W. (2012). Deep brain stimulation in area LC controllably triggers auditory phantom percepts. Neurosurgery, 70(2), 398–405; discussion 405–396. https://doi.org/10.1227/NEU.0b013e3182320ab5

Li, F., Lu, L., Shang, S., Hu, L., Chen, H., Wang, P., & Zhang, H. (2020). Disrupted Functional Network Connectivity Predicts Cognitive Impairment after Acute Mild Traumatic Brain Injury., 26(10), 1083–1091. https://doi.org/10.1111/cns.13430

Article  Google Scholar 

Li, T., Zhu, X., Wu, X., Gong, Y., Jones, J. A., Liu, P., Chang, Y., Yan, N., Chen, X., & Liu, H. (2022). Continuous theta burst stimulation over left and right supramarginal gyri demonstrates their involvement in auditory feedback control of vocal production. Cerebral Cortex. https://doi.org/10.1093/cercor/bhac049

Article  PubMed  PubMed Central  Google Scholar 

Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology, 68(2), 214–220. https://doi.org/10.1001/archneurol.2010.362

Article  PubMed  PubMed Central  Google Scholar 

Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., Ames, D., Ballard, C., Banerjee, S., Burns, A., Cohen-Mansfield, J., Cooper, C., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Larson, E. B., Ritchie, K., Rockwood, K., Sampson, E. L., …, & Mukadam, N. (2017). Dementia prevention, intervention, and care. Lancet, 390(10113), 2673–2734. https://doi.org/10.1016/S0140-6736(17)31363-6

Luan, Y., Wang, C., Jiao, Y., Tang, T., Zhang, J., Lu, C., Salvi, R., & Teng, G. J. (2020). Abnormal functional connectivity and degree centrality in anterior cingulate cortex in patients with long-term sensorineural hearing loss. Brain Imaging and Behavior, 14(3), 682–695. https://doi.org/10.1007/s11682-018-0004-0

Article  PubMed  Google Scholar 

Markesbery, W. R., Schmitt, F. A., Kryscio, R. J., Davis, D. G., Smith, C. D., & Wekstein, D. R. (2006). Neuropathologic substrate of mild cognitive impairment. Archives of Neurology, 63(1), 38–46. https://doi.org/10.1001/archneur.63.1.38

Article  PubMed  Google Scholar 

Pauquet, J., Thiel, C. M., Mathys, C., & Rosemann, S. (2021). Relationship between Memory Load and Listening Demands in Age-Related Hearing Impairment. Neural Plasticity, 2021, 8840452. https://doi.org/10.1155/2021/8840452

Article  PubMed  PubMed Central  Google Scholar 

Power, J. D., & Petersen, S. E. (2013). Control-related systems in the human brain. Current Opinion in Neurobiology, 23(2), 223–228. https://doi.org/10.1016/j.conb.2012.12.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian, Z. J., Chang, P. D., Moonis, G., & Lalwani, A. K. (2017). A novel method of quantifying brain atrophy associated with age-related hearing loss. Neuroimage Clin, 16, 205–209. https://doi.org/10.1016/j.nicl.2017.07.021

Article  PubMed  PubMed Central  Google Scholar 

Ren, F., Ma, W., Li, M., Sun, H., Xin, Q., Zong, W., Chen, W., Wang, G., Gao, F., & Zhao, B. (2018). Gray matter atrophy is associated with cognitive impairment in patients with Presbycusis: A comprehensive morphometric study. Frontiers in Neuroscience, 12, 744. https://doi.org/10.3389/fnins.2018.00744

Article  PubMed  PubMed Central  Google Scholar 

Ren, F., Ma, W., Zong, W., Li, N., Li, X., Li, F., Wu, L., Li, H., Li, M., & Gao, F. (2021). Brain frequency-specific changes in the spontaneous neural activity are associated with cognitive impairment in patients with Presbycusis. Front Aging Neurosci, 13, 649874. https://doi.org/10.3389/fnagi.2021.649874

Article  PubMed  PubMed Central  Google Scholar 

Rosemann, S., & Thiel, C. M. (2018). Audio-visual speech processing in age-related hearing loss: Stronger integration and increased frontal lobe recruitment. NeuroImage, 175, 425–437. https://doi.org/10.1016/j.neuroimage.2018.04.023

Article  PubMed  Google Scholar 

Rubinstein, D. Y., Camarillo-Rodriguez, L., Serruya, M. D., Herweg, N. A., Waldman, Z. J., Wanda, P. A., Sharan, A. D., Weiss, S. A., & Sperling, M. R. (2021). Contribution of left supramarginal and angular gyri to episodic memory encoding: An intracranial EEG study. NeuroImage, 225, 117514. https://doi.org/10.1016/j.neuroimage.2020.117514

Article  PubMed  Google Scholar 

Schaal, N. K., Williamson, V. J., Kelly, M., Muggleton, N. G., Pollok, B., Krause, V., & Banissy, M. J. (2015). A causal involvement of the left supramarginal gyrus during the retention of musical pitches. Cortex, 64, 310–317. https://doi.org/10.1016/j.cortex.2014.11.011

Article  PubMed  Google Scholar 

Shah, M., Kurth, F., & Luders, E. (2021). The impact of aging on the subregions of the fusiform gyrus in healthy older adults. Journal of Neuroscience Research, 99(1), 263–270. https://doi.org/10.1002/jnr.24586

留言 (0)

沒有登入
gif