Use of a supervised machine learning model to predict Oncotype DX risk category in node-positive patients older than 50 years of age

Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826. https://doi.org/10.1056/NEJMoa041588

Article  CAS  PubMed  Google Scholar 

Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:3726–3734. https://doi.org/10.1200/JCO.2005.04.7985

Article  CAS  PubMed  Google Scholar 

Sparano JA, Gray RJ, Makower DF et al (2018) Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med 379:111–121. https://doi.org/10.1056/NEJMoa1804710

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lund MJ, Mosunjac M, Davis KM et al (2012) 21-Gene recurrence scores: racial differences in testing, scores, treatment, and outcome. Cancer 118:788–796. https://doi.org/10.1002/CNCR.26180

Article  PubMed  Google Scholar 

Guth AA, Fineberg S, Fei K et al (2013) Utilization of oncotype DX in an inner city population: race or place? Int J Breast Cancer 2013:1–3. https://doi.org/10.1155/2013/653805

Article  Google Scholar 

Cress RD, Chen YS, Morris CR et al (2016) Underutilization of gene expression profiling for early-stage breast cancer in California. Cancer Causes Control 27:721–727. https://doi.org/10.1007/S10552-016-0743-4/TABLES/3

Article  PubMed  PubMed Central  Google Scholar 

Press DJ, Ibraheem A, Dolan ME et al (2018) Racial disparities in omission of oncotype DX but no racial disparities in chemotherapy receipt following completed oncotype DX test results. Breast Cancer Res Treat 168:207–220. https://doi.org/10.1007/s10549-017-4587-8

Article  PubMed  Google Scholar 

Kozick Z, Hashmi A, Dove J et al (2018) Disparities in compliance with the oncotype DX breast cancer test in the United States: a national cancer data base assessment. Am J Surg 215:686–692. https://doi.org/10.1016/J.AMJSURG.2017.05.008

Article  PubMed  Google Scholar 

Roberts MC, Kurian AW, Petkov VI (2019) Uptake of the 21-gene assay among women with node-positive, hormone receptor-positive breast cancer. J Natl Compr Canc Netw 17:662–668. https://doi.org/10.6004/JNCCN.2018.7266

Article  CAS  PubMed  Google Scholar 

Choi JDW, Hughes TMD, Marx G et al (2022) The utility of the oncotype DX test for breast cancer patients in an Australian multidisciplinary setting. Breast J 2022:1–7. https://doi.org/10.1155/2022/1199245

Article  CAS  Google Scholar 

Pawloski KR, Gonen M, Wen HY et al (2022) Supervised machine learning model to predict oncotype DX risk category in patients over age 50. Breast Cancer Res Treat 191:423–430. https://doi.org/10.1007/S10549-021-06443-W

Article  CAS  PubMed  Google Scholar 

Kalinsky K, Barlow WE, Gralow JR et al (2021) 21-gene assay to inform chemotherapy benefit in node-positive breast cancer. N Engl J Med 385:2336–2347. https://doi.org/10.1056/NEJMOA2108873/SUPPL_FILE/NEJMOA2108873_DATA-SHARING.PDF

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ha R, Chang P, Mutasa S et al (2019) Convolutional neural network using a breast MRI tumor dataset can predict oncotype Dx recurrence score. J Magn Reson Imaging 49:518–524. https://doi.org/10.1002/JMRI.26244

Article  PubMed  Google Scholar 

Flanagan MB, Dabbs DJ, Brufsky AM et al (2008) Histopathologic variables predict oncotype DXTM recurrence score. Mod Pathol 21:1255–1261. https://doi.org/10.1038/modpathol.2008.54

Article  CAS  PubMed  Google Scholar 

Auerbach J, Kim M, Fineberg S (2010) Can features evaluated in the routine pathologic assessment of lymph node-negative estrogen receptor-positive stage I or II invasive breast cancer be used to predict the oncotype DX recurrence score? Arch Pathol Lab Med 134:1697–1701. https://doi.org/10.5858/2009-0439-OAR.1

Article  PubMed  Google Scholar 

Allison KH, Kandalaft PL, Sitlani CM et al (2012) Routine pathologic parameters can predict Oncotype DXTM recurrence scores in subsets of ER positive patients: who does not always need testing? Breast Cancer Res Treat 131:413–424. https://doi.org/10.1007/S10549-011-1416-3/TABLES/5

Article  CAS  PubMed  Google Scholar 

Mattes MD, Mann JM, Ashamalla H, Tejwani A (2013) Routine histopathologic characteristics can predict oncotype DXTM recurrence score in subsets of breast cancer patients. Cancer Investig 31:604–606. https://doi.org/10.3109/07357907.2013.849725

Article  CAS  Google Scholar 

Gage MM, Rosman M, Mylander WC et al (2015) A validated model for identifying patients unlikely to benefit from the 21-gene recurrence score assay. Clin Breast Cancer 15:467–472. https://doi.org/10.1016/J.CLBC.2015.04.006

Article  PubMed  PubMed Central  Google Scholar 

Turner BM, Skinner KA, Tang P et al (2015) Use of modified Magee equations and histologic criteria to predict the oncotype DX recurrence score. Mod Pathol 28:921–931. https://doi.org/10.1038/MODPATHOL.2015.50

Article  PubMed  Google Scholar 

Eaton AA, Pesce CE, Murphy JO et al (2017) Estimating the oncotype DX score: validation of an inexpensive estimation tool. Breast Cancer Res Treat 161:435–441. https://doi.org/10.1007/S10549-016-4069-4/TABLES/3

Article  CAS  PubMed  Google Scholar 

Orucevic A, Bell JL, King M et al (2019) Nomogram update based on TAILORx clinical trial results—oncotype DX breast cancer recurrence score can be predicted using clinicopathologic data. Breast 46:116–125. https://doi.org/10.1016/J.BREAST.2019.05.006

Article  PubMed  Google Scholar 

Lee SB, Kim J, Sohn G et al (2019) A nomogram for predicting the oncotype DX recurrence score in women with T1–3N0-1miM0 hormone receptor-positive, human epidermal growth factor 2 (HER2)-negative breast cancer. Cancer Res Treat 51:1073. https://doi.org/10.4143/CRT.2018.357

Article  CAS  PubMed  Google Scholar 

Yoo SH, Kim TY, Kim M et al (2020) Development of a nomogram to predict the recurrence score of 21-gene prediction assay in hormone receptor-positive early breast cancer. Clin Breast Cancer 20:98-107.e1. https://doi.org/10.1016/J.CLBC.2019.07.010

Article  CAS  PubMed  Google Scholar 

Batra A, Nixon NA, Roldan-Urgoiti G et al (2021) Developing a clinical-pathologic model to predict genomic risk of recurrence in patients with hormone receptor positive, human epidermal growth factor receptor-2 negative, node negative breast cancer. Cancer Treat Res Commun 28:100401. https://doi.org/10.1016/J.CTARC.2021.100401

Article  PubMed  Google Scholar 

Marazzi F, Barone R, Masiello V et al (2020) Oncotype DX predictive nomogram for recurrence score output: the novel system ADAPTED01 based on quantitative immunochemistry analysis. Clin Breast Cancer 20:e600–e611. https://doi.org/10.1016/J.CLBC.2020.04.012

Article  CAS  PubMed  Google Scholar 

Acs G, Esposito NN, Kiluk J et al (2011) A mitotically active, cellular tumor stroma and/or inflammatory cells associated with tumor cells may contribute to intermediate or high oncotype DX recurrence scores in low-grade invasive breast carcinomas. Modern Pathol 25:556–566. https://doi.org/10.1038/modpathol.2011.194

Article  CAS  Google Scholar 

Kalinsky KM, Barlow WE, Gralow JR et al (2022) Abstract GS2-07: Updated results from a phase 3 randomized clinical trial in participants (pts) with 1-3 positive lymph nodes (LN), hormone receptor-positive (HR+) and HER2-negative (HER2-) breast cancer (BC) with recurrence score (RS) ≤ 25 randomized to endocrine therapy (ET) +/- chemotherapy (CT): SWOG S1007 (RxPONDER). Can Res 82:GS2-07. https://doi.org/10.1158/1538-7445.SABCS21-GS2-07

Article  Google Scholar 

留言 (0)

沒有登入
gif