Sphingosine 1-phosphate receptor modulators for the treatment of inflammatory bowel disease and other immune-mediated diseases

Hla T, Brinkmann V. Sphingosine 1-phosphate (S1P) physiology and the effects of S1P receptor modulation. Neurology. 2011;76:S3–8. https://doi.org/10.1212/WNL.0b013e31820d5ec1.

Article  PubMed  CAS  Google Scholar 

Chun J, Giovannoni G, Hunter SF. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects. Drugs. 2021;81:207–31. https://doi.org/10.1007/s40265-020-01431-8.

Article  PubMed  CAS  Google Scholar 

Park SJ, Im DS. Sphingosine 1-phosphate receptor modulators and drug discovery. Biomol Ther. 2017;25:80–90. https://doi.org/10.4062/biomolther.2016.160.

Article  CAS  Google Scholar 

Waeber C, Walther T. Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction. Circ J. 2014;78:795–802. https://doi.org/10.1253/circj.CJ-14-0178.

Article  PubMed  CAS  Google Scholar 

Patmanathan SN, Wang W, Yap LF, Herr DR, Paterson IC. Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell Signal. 2017;34:66–75. https://doi.org/10.1016/j.cellsig.2017.03.002.

Article  PubMed  CAS  Google Scholar 

Intapad S. Sphingosine-1-phosphate signaling in blood pressure regulation. Am J Physiol Ren Physiol. 2019;317:E638–40. https://doi.org/10.1152/ajprenal.00572.2018.

Article  CAS  Google Scholar 

Brunkhorst R, Vutukuri R, Pfeilschifter W. Fingolimod for the treatment of neurological diseases-state of play and future perspectives. Front Cell Neurosci. 2014;8. https://doi.org/10.3389/fncel.2014.00283.

Kono M, Proia RL. Imaging S1P1 activation in vivo. Exp Cell Res. 2015;333:178–82. https://doi.org/10.1016/j.yexcr.2014.11.023.

Article  PubMed  CAS  Google Scholar 

Kono M, Tucker AE, Tran J, Bergner JB, Turner EM, Proia RL. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. J Clin Investig. 2014;124:2076–86. https://doi.org/10.1172/jci71194.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blaho VA, Hla T. An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res. 2014;55:1596–608. https://doi.org/10.1194/jlr.R046300.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blankenbach KV, Schwalm S, Pfeilschifter J, zu Heringdorf DM. Sphingosine-1-phosphate receptor-2 antagonists: therapeutic potential and potential risks. Front Pharm. 2016;7:14. https://doi.org/10.3389/fphar.2016.00167.

Article  CAS  Google Scholar 

Siehler S, Wang Y, Fan X, Windh RT, Manning DR. Sphingosine 1-phosphate activates nuclear factor-kappa B through Edg receptors. Activation through Edg-3 and Edg-5, but not Edg-1, in human embryonic kidney 293 cells. J Biol Chem. 2001;276:48733–9. https://doi.org/10.1074/jbc.M011072200.

Article  PubMed  CAS  Google Scholar 

O’Sullivan MJ, Hirota N, Martin JG. Sphingosine 1-phosphate (S1P) induced interleukin-8 (IL8) release is mediated by S1P receptor 2 and nuclear factor kappa B in BEAS-2B cells. PLoS ONE. 2014;9:e95566. https://doi.org/10.1371/journal.pone.0095566.

Article  PubMed  PubMed Central  Google Scholar 

Volzke A, Koch A, Heringdorf DMZ, Huwiler A, Pfeilschifter J. Sphingosine 1-phosphate (S1P) induces COX-2 expression and PGE(2) formation via S1P receptor 2 in renal mesangial cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2014;1841:11–21. https://doi.org/10.1016/j.bbalip.2013.09.009.

Article  CAS  Google Scholar 

Zhang GQ, Yang L, Kim GS, Ryan K, Lu SL, O’Donnell RK, et al. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood. 2013;122:443–55. https://doi.org/10.1182/blood-2012-11-467191.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Takabe K, Paugh SW, Milstien S, Spiegel S. “Inside-Out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharm Rev. 2008;60:181–95. https://doi.org/10.1124/pr.107.07113.

Article  PubMed  CAS  Google Scholar 

Bravo GÁ, Cedeño RR, Casadevall MP, Ramió-Torrentà L. Sphingosine-1-phosphate (S1P) and S1P signaling pathway modulators, from current insights to future perspectives. Cells. 2022;11:2058. https://doi.org/10.3390/cells11132058.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fryer RM, Muthukumarana A, Harrison PC, Mazurek SN, Chen RR, Harrington KE, et al. The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P(1)) and hypertension (S1P(3)) in rat. PLoS ONE. 2012;7:9. https://doi.org/10.1371/journal.pone.0052985.

Article  CAS  Google Scholar 

Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther. 2007;115:84–105. https://doi.org/10.1016/j.pharmthera.2007.04.006.

Article  PubMed  CAS  Google Scholar 

Wang WG, Graeler MH, Goetzl EJ. Type 4 sphingosine 1-phosphate G protein-coupled receptor (S1P(4)) transduces S1P effects on T cell proliferation and cytokine secretion without signaling migration. Faseb J. 2005;19:1731. https://doi.org/10.1096/fj.05-3730fje.

Article  PubMed  CAS  Google Scholar 

Musumeci F, Greco C, Giacchello I, Fallacara AL, Ibrahim MM, Grossi G, et al. An update on JAK inhibitors. Curr Med Chem. 2019;26:1806–32. https://doi.org/10.2174/0929867325666180327093502.

Article  PubMed  CAS  Google Scholar 

Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Disco. 2017;16:843–62. https://doi.org/10.1038/nrd.2017.201.

Article  CAS  Google Scholar 

Matsukawa A. STAT proteins in innate immunity during sepsis: lessons from gene knockout mice. Acta Med Okayama. 2007;61:239–45. https://doi.org/10.18926/amo/32897.

Article  PubMed  CAS  Google Scholar 

Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13:234–43. https://doi.org/10.1038/nrrheum.2017.23.

Article  PubMed  CAS  Google Scholar 

Xie WH, Xiao SY, Huang YR, Sun XY, Zhang ZL. Effect of tofacitinib on cardiovascular events and all-cause mortality in patients with immune-mediated inflammatory diseases: a systematic review and meta-analysis of randomized controlled trials. Ther Adv Musculoskelet Dis. 2019;11:18. https://doi.org/10.1177/1759720×19895492.

Article  Google Scholar 

Venetsanopoulou AI, Voulgari PV, Drosos AA. Janus kinase versus TNF inhibitors: where we stand today in rheumatoid arthritis. Expert Rev Clin Immunol. 2022;18:485–93. https://doi.org/10.1080/1744666x.2022.2064275.

Article  PubMed  CAS  Google Scholar 

Atreya R, Billmeier U, Rath T, Neumann H, Neurath MF. Binding of membrane-bound TNF. In: Rogler G, Herfarth H, Hibi T, Nielsen OH, editors. Anti-tumor necrosis factor therapy in inflammatory bowel disease. Frontiers of Gastrointestinal Research. Basel: Karger; 2015. p. 62–72.

Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–46. https://doi.org/10.1038/nri1001.

Article  PubMed  CAS  Google Scholar 

Pugliese D, Privitera G, Fiorani M, Parisio L, Calvez V, Papa A, et al. Targeting IL12/23 in ulcerative colitis: update on the role of ustekinumab. Ther Adv Gastroenterol. 2022;15:17562848221102283. https://doi.org/10.1177/17562848221102283.

Article  Google Scholar 

Jang DI, Lee AH, Shin HY, Song HR, Park JH, Kang TB, et al. The role of tumor necrosis factor alpha (TNF-alpha) in autoimmune disease and current TNF-alpha inhibitors in therapeutics. Int J Mol Sci. 2021;22:16. https://doi.org/10.3390/ijms22052719.

Article  CAS  Google Scholar 

Papamichael K, Lin S, Moore M, Papaioannou G, Sattler L, Cheifetz AS. Infliximab in inflammatory bowel disease. Ther Adv Chronic Dis. 2019;10:15. https://doi.org/10.1159/000509393.

Article  Google Scholar 

Yarur AJ, Rubin DT. Therapeutic drug monitoring of anti-tumor necrosis factor agents in patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2015;21:1709–18. https://doi.org/10.1097/mib.0000000000000380.

Article  PubMed  Google Scholar 

Olivera P, Danese S, Peyrin-Biroulet L. Next generation of small molecules in inflammatory bowel disease. Gut. 2017;66:199–209. https://doi.org/10.1136/gutjnl-2016-312912.

Article  PubMed  CAS  Google Scholar 

Cramer JA, Roy A, Burrell A, Fairchild CJ, Fuldeore MJ, Ollendorf DA, et al. Medication compliance and persistence: terminology and definitions. Value Health. 2008;11:44–7. https://doi.org/10.1111/j.1524-4733.2007.00213.x.

Article  PubMed  Google Scholar 

Chun J, Kihara Y, Jonnalagadda D, Blaho VA. Fingolimod: lessons learned and new opportunities for treating multiple sclerosis and other disorders. In: Insel PA, editor. Annual review of pharmacology and toxicology, Vol 59. Palo Alto: Annual Reviews; 2019. p. 149–70.

Curro D, Pugliese D, Armuzzi A. Frontiers in drug research and development for inflammatory bowel disease. Front Pharm. 2017;8:19. https://doi.org/10.3389/fphar.2017.00400.

Article  CAS  Google Scholar 

Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33:91–101. https://doi.org/10.1097/WNF.0b013e3181cbf825.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zecri FJ. From natural product to the first oral treatment for multiple sclerosis: the discovery of FTY720 (Gilenya (TM))? Curr Opin Chem Biol. 2016;32:60–6. https://doi.org/10.1016/j.cbpa.2016.04.014.

Article  PubMed  CAS  Google Scholar 

Kappos L, Antel J, Comi G, Montalban X, O’Connor P, Polman CH, et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med. 2006;355:1124–40. https://doi.org/10.1056/NEJMoa052643.

Article  PubMed  CAS 

留言 (0)

沒有登入
gif