Dual-probe fluorescence spectroscopy for sensitive quantitation of Alzheimer’s amyloid pathology

Aliyan A, Cook NP, Martí AA (2019) Interrogating Amyloid Aggregates using Fluorescent Probes. Chem Rev 119(23):11819-11856. https://doi.org/10.1021/acs.chemrev.9b00404.

Ando Y, Haraoka K, Terazaki H, Tanoue Y, Ishikawa K, Katsuragi S, Nakamura M, Sun X, Nakagawa K, Sasamoto K, Takesako K, Ishizaki T, Sasaki Y, Doh-ura K (2003) A Novel Tool for Detecting Amyloid Deposits in Systemic Amyloidosis In Vitro and In Vivo. Lab Investig 83:1751–1759. https://doi.org/10.1097/01.LAB.0000101701.87433.C5

Article  CAS  PubMed  Google Scholar 

Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116. https://doi.org/10.1093/cercor/1.1.103

Article  CAS  PubMed  Google Scholar 

Bourdenx M, Koulakiotis NS, Sanoudou D, Bezard E, Dehay B, Tsarbopoulos A (2017) Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies. Prog Neurobiol 155:171–193. https://doi.org/10.1016/j.pneurobio.2015.07.003

Article  CAS  PubMed  Google Scholar 

Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/BF00308809

Article  CAS  PubMed  Google Scholar 

Campos RI, Wu X, Elgland M, Konradsson P, Hammarström P (2016) Novel trans-Stilbene-based Fluorophores as Probes for Spectral Discrimination of Native and Protofibrillar Transthyretin. ACS Chem Neurosci 7:924–940. https://doi.org/10.1021/acschemneuro.6b00062

Article  CAS  PubMed  Google Scholar 

Carroll JA, Striebel JF, Rangel A, Woods T, Phillips K, Peterson KE, Race B, Chesebro B (2016) Prion Strain Differences in Accumulation of PrPSc on Neurons and Glia Are Associated with Similar Expression Profiles of Neuroinflammatory Genes: Comparison of Three Prion Strains. PLoS Pathog 12(4):e1005551. https://doi.org/10.1371/journal.ppat.1005551

Chatani E, Yuzu K, Ohhashi Y, Goto Y (2021) Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils. Int J Mol Sci 22(9):4349. https://doi.org/10.3390/ijms22094349

Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y (2007) Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nat Struct Mol Biol 14:1157–1164. https://doi.org/10.1038/nsmb1345

Article  CAS  PubMed  Google Scholar 

Cohen M, Appleby B, Safar JG (2016) Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer’s disease. Prion 10:9–17. https://doi.org/10.1080/19336896.2015.1123371

Article  CAS  PubMed  PubMed Central  Google Scholar 

Condello C, Lemmin T, Stöhr J, Nick M, Wu Y, Maxwell AM, Watts JC, Caro CD, Oehler A, Keene CD, Bird TD, van Duinen SG, Lannfelt L, Ingelsson M, Graff C, Giles K, DeGrado WF, Prusiner SB (2018) Structural heterogeneity and intersubject variability of Aβ in familial and sporadic Alzheimer’s disease. Proc Natl Acad Sci U S A 115:E782–E791. https://doi.org/10.1073/pnas.1714966115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crystal AS, Giasson BI, Crowe A, Kung M-P, Zhuang Z-P, Trojanowski JQ, Lee VM-Y (2003) A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114. J Neurochem 86:1359–1368. https://doi.org/10.1046/j.1471-4159.2003.01949.x

Article  CAS  PubMed  Google Scholar 

Dujardin S, Commins C, Lathuiliere A, Beerepoot P, Fernandes AR, Kamath TV, De Los Santos MB, Klickstein N, Corjuc DL, Corjuc BT, Dooley PM, Viode A, Oakley DH, Moore BD, Mullin K, Jean-Gilles D, Clark R, Atchison K, Moore R, Chibnik LB, Tanzi RE, Frosch MP, Serrano-Pozo A, Elwood F, Steen JA, Kennedy ME, Hyman BT (2020) Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease. Nat Med 26:1256–1263. https://doi.org/10.1038/s41591-020-0938-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elghetany MT, Saleem A (1988) Methods for staining amyloid in tissues: A review. Biotech Histochem 63:201–212. https://doi.org/10.3109/10520298809107185

Article  CAS  Google Scholar 

Fereidouni F, Bader AN, Gerritsen HC (2012) Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images. Opt Express 20:12729–12741. https://doi.org/10.1364/OE.20.012729

Article  CAS  PubMed  Google Scholar 

Frid P, Anisimov SV, Popovic N (2007) Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 53:135–160. https://doi.org/10.1016/j.brainresrev.2006.08.001

Article  CAS  PubMed  Google Scholar 

Fu H, Cui M, Tu P, Pan Z, Liu B (2014) Evaluation of molecules based on the electron donor–acceptor architecture as near-infrared β-amyloidal-targeting probes. Chem Commun 50:11875–11878. https://doi.org/10.1039/C4CC04907A

Article  CAS  Google Scholar 

Gerson JE, Mudher A, Kayed R (2016) Potential mechanisms and implications for the formation of tau oligomeric strains. Crit Rev Biochem Mol Biol 51:482–496. https://doi.org/10.1080/10409238.2016.1226251

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goedert M (2015) NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349:1255555. https://doi.org/10.1126/science.1255555

Article  CAS  PubMed  Google Scholar 

Golfetto O, Hinde E, Gratton E (2015) In: Owen DM (ed) The Laurdan Spectral Phasor Method to Explore Membrane Micro-heterogeneity and Lipid Domains in Live Cells BT - Methods in Membrane Lipids. Springer New York, New York, NY, pp 273–290

Google Scholar 

Gravina SA, Ho L, Eckman CB, Long KE, Otvos LJ, Younkin LH, Suzuki N, Younkin SG (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270:7013–7016. https://doi.org/10.1074/jbc.270.13.7013

Article  CAS  PubMed  Google Scholar 

Groenning M, Olsen L, van de Weert M, Flink JM, Frokjaer S, Jørgensen FS (2007) Study on the binding of Thioflavin T to β-sheet-rich and non-β-sheet cavities. J Struct Biol 158:358–369. https://doi.org/10.1016/j.jsb.2006.12.010

Article  CAS  PubMed  Google Scholar 

Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A (2021) The Amyloid-β Pathway in Alzheimer’s Disease. Mol Psychiatry 26:5481–5503. https://doi.org/10.1038/s41380-021-01249-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hampton OL, Buckley RF, Manning LK, Scott MR, Properzi MJ, Peña-Gómez C, Jacobs HIL, Chhatwal JP, Johnson KA, Sperling RA, Schultz AP (2020) Resting-state functional connectivity and amyloid burden influence longitudinal cortical thinning in the default mode network in preclinical Alzheimer’s disease. NeuroImage Clin 28:102407. https://doi.org/10.1016/j.nicl.2020.102407

Article  PubMed  PubMed Central  Google Scholar 

Hazeki N, Tukamoto T, Goto J, Kanazawa I (2000) Formic acid dissolves aggregates of an N-terminal huntingtin fragment containing an expanded polyglutamine tract: Applying to quantification of protein components of the aggregates. Biochem Biophys Res Commun 277:386–393. https://doi.org/10.1006/bbrc.2000.3682

Article  CAS  PubMed  Google Scholar 

Howie AJ, Brewer DB (2009) Optical properties of amyloid stained by Congo red: History and mechanisms. Micron 40:285–301. https://doi.org/10.1016/j.micron.2008.10.002

Article  CAS  PubMed  Google Scholar 

Howie AJ, Owen-Casey MP (2010) Discrepancies between descriptions and illustrations of colours in Congo red-stained amyloid, and explanation of discrepant colours. Amyloid 17:109–117. https://doi.org/10.3109/13506129.2010.527448

Article  PubMed  Google Scholar 

Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest 57:230–236

CAS  PubMed  Google Scholar 

Lau HHC, Ingelsson M, Watts JC (2020) The existence of Aβ strains and their potential for driving phenotypic heterogeneity in Alzheimer’s disease. Acta Neuropathol 142(1):17-39. https://doi.org/10.1007/s00401-020-02201-2

Article  Google Scholar 

Li S, Stern AM (2022) Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities. Mol Psychiatry. https://doi.org/10.1038/s41380-022-01589-5

Article  Google Scholar 

Liu P, Reed MN, Kotilinek LA, Grant MKO, Forster CL, Qiang W, Shapiro SL, Reichl JH, Chiang ACA, Jankowsky JL, Wilmot CM, Cleary JP, Zahs KR, Ashe KH (2015) Quaternary Structure Defines a Large Class of Amyloid-β Oligomers Neutralized by Sequestration. Cell Rep 11:1760–1771. https://doi.org/10.1016/j.celrep.2015.05.021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marsh AP (2019) Molecular mechanisms of proteinopathies across neurodegenerative disease: a review. Neurol Res Pract 1:35. https://doi.org/10.1186/s42466-019-0039-8

Article  PubMed  PubMed Central  Google Scholar 

McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer?s disease. Ann Neurol 46:860?866. https://doi.org/10.1002/1531-8249

Narasimhan S, Guo JL, Changolkar L, Stieber A, McBride JD, Silva LV, He Z, Zhang B, Gathagan RJ, Trojanowski JQ, Lee VMY (2017) Pathological tau strains from human brains recapitulate the diversity of tauopathies in non-transgenic mouse brain. J Neurosci 37(47):11406-11423. https://doi.org/10.1523/JNEUROSCI.1230-17.2017

Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-Propagating, Molecular-Level Polymorphism in Alzheimer’s β-Amyloid Fibrils. Science (80) 307:262-265. https://doi.org/10.1126/science.1105850

Qiang W, Yau W-M, Lu J-X, Collinge J, Tycko R (2017) Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature 541:217–221. https://doi.org/10.1038/nature20814

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasmussen J, Jucker M, Walker LC (2017) Aβ seeds and prions: How close the fit? Prion 11:215–225. https://doi.org/10.1080/19336896.2017.1334029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt ML, Schuck T, Sheridan S, Kung MP, Kung H, Zhuang ZP, Bergeron C, Lamarche JS, Skovronsky D, Giasson BI, Lee VMY, Trojanowski JQ (2001) The fluorescent Congo red derivative, (trans, trans)-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-Hydroxy)styrylbenzene (BSB), labels diverse β-pleated sheet structures in postmortem human neurodegenerative disease brains. Am J Pathol 159:937–943. https://doi.org/10.1016/S0002-9440(10)61769-5

Article  CAS 

留言 (0)

沒有登入
gif