Cardiovascular Dysfunction in Intrauterine Growth Restriction

Alberry M, Soothill P. Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed. 2007;92(1):F62–7. https://doi.org/10.1136/adc.2005.082297.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Damodaram M, Story L, Kulinskaya E, Rutherford M, Kumar S. Early adverse perinatal complications in preterm growth-restricted fetuses. Aust N Z J Obstet Gynaecol. 2011;51(3):204–9. https://doi.org/10.1111/j.1479-828X.2011.01299.x.

Article  PubMed  Google Scholar 

Gebb J, Dar P. Colour Doppler ultrasound of spiral artery blood flow in the prediction of pre-eclampsia and intrauterine growth restriction. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):355–66. https://doi.org/10.1016/j.bpobgyn.2011.01.008.

Article  PubMed  Google Scholar 

Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr. 2016;10:67–83. https://doi.org/10.4137/CMPed.S40070.

Article  PubMed  PubMed Central  Google Scholar 

Romo A, Carceller R, Tobajas J. Intrauterine growth retardation (IUGR): epidemiology and etiology. Pediatr Endocrinol Rev. 2009;6(Suppl 3):332–6.

PubMed  Google Scholar 

Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301(6746):259–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation. 2013;127(6):749–56. https://doi.org/10.1161/CIRCULATIONAHA.112.128413. This very useful review describes of global methodologies of mortality measurement for estimating deaths from cardiovascular disease.

Say L, Chou D, Gemmill A, Tuncalp O, Moller AB, Daniels J, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323–33. https://doi.org/10.1016/S2214-109X(14)70227-X.

Article  PubMed  Google Scholar 

Zandi-Nejad K, Luyckx VA, Brenner BM. Adult hypertension and kidney disease - the role of fetal programming. Hypertension. 2006;47(3):502–8. https://doi.org/10.1161/01.HYP.0000198544.09909.1a.

Article  CAS  PubMed  Google Scholar 

Staessen JA, Wang J, Bianchi G, Birkenhager WH. Essential hypertension. Lancet. 2003;361(9369):1629–41. https://doi.org/10.1016/S0140-6736(03)13302-8.

Article  PubMed  Google Scholar 

Hennig M, Fiedler S, Jux C, Thierfelder L, Drenckhahn JD. Prenatal mechanistic target of rapamycin complex 1 (m TORC1) inhibition by rapamycin treatment of pregnant mice causes intrauterine growth restriction and alters postnatal cardiac growth, morphology, and function. J Am Heart Assoc. 2017;6(8). https://doi.org/10.1161/JAHA.117.005506.

Crispi F, Miranda J, Gratacos E. Long-term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease. Am J Obstet Gynecol. 2018;218(2S):S869–79. https://doi.org/10.1016/j.ajog.2017.12.012.

Article  PubMed  Google Scholar 

Lisowska M, Pietrucha T, Sakowicz A. Preeclampsia and related cardiovascular risk: common genetic background. Curr Hypertens Rep. 2018;20(8):71. https://doi.org/10.1007/s11906-018-0869-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaccioli F, Lager S. Placental nutrient transport and intrauterine growth restriction. Front Physiol. 2016;7:40. https://doi.org/10.3389/fphys.2016.00040.

Article  PubMed  PubMed Central  Google Scholar 

Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S745–61. https://doi.org/10.1016/j.ajog.2017.11.577.

Article  CAS  PubMed  Google Scholar 

Jansson N, Rosario FJ, Gaccioli F, Lager S, Jones HN, Roos S, et al. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab. 2013;98(1):105–13. https://doi.org/10.1210/jc.2012-2667.

Article  CAS  PubMed  Google Scholar 

Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet. 2005;37(1):19–24. https://doi.org/10.1038/ng1494.

Article  CAS  PubMed  Google Scholar 

Economides DL, Nicolaides KH. Blood glucose and oxygen tension levels in small-for-gestational-age fetuses. Am J Obstet Gynecol. 1989;160(2):385–9.

Article  CAS  PubMed  Google Scholar 

Dimasuay KG, Boeuf P, Powell TL, Jansson T. Placental responses to changes in the maternal environment determine fetal growth. Front Physiol. 2016;7:12. https://doi.org/10.3389/fphys.2016.00012.

Article  PubMed  PubMed Central  Google Scholar 

Sati L, Soygur B, Celik-Ozenci C. Expression of mammalian target of rapamycin and downstream targets in normal and gestational diabetic human term placenta. Reprod Sci. 2016;23(3):324–32. https://doi.org/10.1177/1933719115602765.

Article  CAS  PubMed  Google Scholar 

Desforges M, Lacey HA, Glazier JD, Greenwood SL, Mynett KJ, Speake PF, et al. SNAT4 isoform of system A amino acid transporter is expressed in human placenta. Am J Physiol Cell Physiol. 2006;290(1):C305–12. https://doi.org/10.1152/ajpcell.00258.2005.

Article  CAS  PubMed  Google Scholar 

Gupta MB, Jansson T. Novel roles of mTOR signaling in regulating fetal growth. Biol Reprod. 2018. https://doi.org/10.1093/biolre/ioy249.

Article  PubMed  PubMed Central  Google Scholar 

Arsham AM, Howell JJ, Simon MC. A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem. 2003;278(32):29655–60. https://doi.org/10.1074/jbc.M212770200.

Article  CAS  PubMed  Google Scholar 

Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 2006;3(6):393–402. https://doi.org/10.1016/j.cmet.2006.05.003.

Article  CAS  PubMed  Google Scholar 

Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84. https://doi.org/10.1016/j.cell.2006.01.016.

Article  CAS  PubMed  Google Scholar 

Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873–86. https://doi.org/10.1016/j.cell.2009.03.046.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roos S, Lagerlof O, Wennergren M, Powell TL, Jansson T. Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling. Am J Physiol Cell Physiol. 2009;297(3):C723–31. https://doi.org/10.1152/ajpcell.00191.2009.

Article  CAS  PubMed  Google Scholar 

Spradley FT, Ge Y, Haynes BP, Granger JP, Anderson CD. Adrenergic receptor blockade attenuates placental ischemia-induced hypertension. Physiol Rep. 2018;6(17):e13814. https://doi.org/10.14814/phy2.13814.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spradley FT, Palei AC, Granger JP. Increased risk for the development of preeclampsia in obese pregnancies: weighing in on the mechanisms. Am J Physiol Regul Integr Comp Physiol. 2015;309(11):R1326–43. https://doi.org/10.1152/ajpregu.00178.2015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Stone P, Ching LM, Chamley L. A role for interleukin-6 in spreading endothelial cell activation after phagocytosis of necrotic trophoblastic material: implications for the pathogenesis of pre-eclampsia. J Pathol. 2009;217(1):122–30. https://doi.org/10.1002/path.2425.

Article  CAS  PubMed  Google Scholar 

Harradine KA, Akhurst RJ. Mutations of TGFbeta signaling molecules in human disease. Ann Med. 2006;38(6):403–14. https://doi.org/10.1080/07853890600919911.

Article  CAS  PubMed  Google Scholar 

Stojanovska V, Scherjon SA, Plosch T. Preeclampsia as modulator of offspring health. Biol Reprod. 2016;94(3). ARTN 53 https://doi.org/10.1095/biolreprod.115.135780.

Palei AC, Spradley FT, Warrington JP, George EM, Granger JP. Pathophysiology of hypertension in pre-eclampsia: a lesson in integrative physiology. Acta Physiol (Oxf). 2013;208(3):224–33. https://doi.org/10.1111/apha.12106.

Article  CAS  Google Scholar 

ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol. 2007;8(11):857–69. https://doi.org/10.1038/nrm2262.

Article  CAS  PubMed  Google Scholar 

Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12(6):642–9. https://doi.org/10.1038/nm1429.

Article  CAS  PubMed  Google Scholar 

Chauvin S, Yinon Y, Xu J, Ermini L, Sallais J, Tagliaferro A, et al. Aberrant TGFbeta signalling contributes to dysregulation of sphingolipid metabolism in intrauterine growth restriction. J Clin Endocrinol Metab. 2015;100(7):E986–96. https://doi.org/10.1210/jc.2015-1288.

Article  PubMed  Google Scholar 

Londhe VA, Maisonet TM, Lopez B, Shin BC, Huynh J, Devaskar SU. Retinoic acid rescues alveolar hypoplasia in the calorie-restricted developing rat lung. Am J Respir Cell Mol Biol. 2013;48(2):179–87. https://doi.org/10.1165/rcmb.2012-0229OC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sava RI, March KL, Pepine CJ. Hypertension in pregnancy: taking cues from pathophysiology for clinical practice. Clin Cardiol. 2018;41(2):220–7. https://doi.org/10.1002/clc.22892.

Article 

留言 (0)

沒有登入
gif