Novel approaches to capturing and using continuous cardiorespiratory physiological data in hospitalized children

Atallah, L. et al. Unobtrusive ECG monitoring in the NICU using a capacitive sensing array. Physiol. Meas. 35, 895–913 (2014).

CAS  PubMed  Google Scholar 

Xu, S., Jayaraman, A. & Rogers, J. A. Skin sensors are the future of health care. Nature 571, 319–321 (2019).

CAS  PubMed  Google Scholar 

Sanchez-Pinto, L. N., Luo, Y. & Churpek, M. M. Big data and data science in critical care. Chest 154, 1239–1248 (2018).

PubMed  PubMed Central  Google Scholar 

Amiri, P. et al. Potential prognostic markers in the heart rate variability features for early diagnosis of sepsis in the pediatric intensive care unit using convolutional neural network classifiers. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2020, 5627–5630 (2020).

Google Scholar 

Cabrera-Quiros, L. et al. Prediction of late-onset sepsis in preterm infants using monitoring signals and machine learning. Crit. Care Explor. 3, e0302 (2021).

PubMed  PubMed Central  Google Scholar 

Kamaleswaran, R. et al. Applying artificial intelligence to identify physiomarkers predicting severe sepsis in the PICU. Pediatr. Crit. Care Med. 19, e495–e503 (2018).

PubMed  Google Scholar 

Leon, C., Carrault, G., Pladys, P. & Beuchee, A. Early detection of late onset sepsis in premature infants using visibility graph analysis of heart rate variability. IEEE J. Biomed. Health Inf. 25, 1006–1017 (2021).

Google Scholar 

Spaeder, M. C. et al. Predictive analytics in the pediatric intensive care unit for early identification of sepsis: capturing the context of age. Pediatr. Res. 86, 655–661 (2019).

PubMed  Google Scholar 

Stanculescu, I., Williams, C. K. I. & Freer, Y. Autoregressive hidden Markov models for the early detection of neonatal sepsis. IEEE J. Biomed. Health Inf. 18, 1560–1570 (2014).

Google Scholar 

Xiao, Y., Griffin, M. P., Lake, D. E. & Moorman, J. R. Nearest-neighbor and logistic regression analyses of clinical and heart rate characteristics in the early diagnosis of neonatal sepsis. Med. Decis. Mak. 30, 258–266 (2010).

Google Scholar 

Rusin, C. G. et al. Prediction of imminent, severe deterioration of children with parallel circulations using real-time processing of physiologic data. J. Thorac. Cardiovasc. Surg. 152, 171–177 (2016).

PubMed  PubMed Central  Google Scholar 

Bose, S. N. et al. Early identification of impending cardiac arrest in neonates and infants in the cardiovascular ICU: a statistical modelling approach using physiologic monitoring data. Cardiol. Young. 29, 1340–1348 (2019).

PubMed  Google Scholar 

Badke, C. M., Swigart, L., Carroll, M. S., Weese-Mayer, D. E. & Sanchez-Pinto, L. N. Autonomic nervous system dysfunction is associated with re-hospitalization in pediatric septic shock survivors. Front. Pediatr. 9, 745844 (2021).

PubMed  Google Scholar 

Yiallourou, S. R., Walker, A. M. & Horne, R. S. C. Validation of a new noninvasive method to measure blood pressure and assess baroreflex sensitivity in preterm infants during sleep. Sleep 29, 1083–1088 (2006).

PubMed  Google Scholar 

Lemson, J. et al. The reliability of continuous noninvasive finger blood pressure measurement in critically ill children. Anesth. Analg. 108, 814–821 (2009).

PubMed  Google Scholar 

Andriessen, P. et al. Feasibility of noninvasive continuous finger arterial blood pressure measurements in very young children, aged 0-4 years. Pediatr. Res. 63, 691–696 (2008).

PubMed  Google Scholar 

Kapur, G. et al. Noninvasive determination of blood pressure by heart sound analysis compared with intra-arterial monitoring in critically ill children–a pilot study of a novel approach. Pediatr. Crit. Care Med. 20, 809–816 (2019).

PubMed  Google Scholar 

Liu, C. et al. Wireless, skin-interfaced devices for pediatric critical care: application to continuous, noninvasive blood pressure monitoring. Adv. Healthc. Mater. 10, e2100383 (2021).

PubMed  Google Scholar 

Chandler, J. R. et al. Pulse oximeter plethysmograph variation and its relationship to the arterial waveform in mechanically ventilated children. J. Clin. Monit. Comput. 26, 145–151 (2012).

CAS  PubMed  Google Scholar 

Hay, W. W. Jr et al. Reliability of conventional and new pulse oximetry in neonatal patients. J. Perinatol. 22, 360–366 (2002).

PubMed  Google Scholar 

Chaichulee, S. et al. Cardio-respiratory signal extraction from video camera data for continuous non-contact vital sign monitoring using deep learning. Physiol. Meas. 40, 115001 (2019).

PubMed  PubMed Central  Google Scholar 

Chen, Q. et al. Non-contact heart rate monitoring in neonatal intensive care unit using RGB camera. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2020, 5822–5825 (2020).

Google Scholar 

Cobos-Torres, J.-C., Abderrahim, M. & Martínez-Orgado, J. Non-contact, simple neonatal monitoring by photoplethysmography. Sensors 18, 4362 (2018).

Mestha, L. K., Kyal, S., Xu, B., Lewis, L. E. & Kumar, V. Towards continuous monitoring of pulse rate in neonatal intensive care unit with a webcam. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 3817–3820 (2014).

Google Scholar 

Villarroel, M. et al. Non-contact physiological monitoring of preterm infants in the neonatal intensive care unit. NPJ Digit. Med. 2, 128 (2019).

Lee, W. H. et al. Feasibility of non-contact cardiorespiratory monitoring using impulse-radio ultra-wideband radar in the neonatal intensive care unit. PLoS One 15, e0243939 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Marchionni, P., Scalise, L., Ercoli, I. & Tomasini, E. P. An optical measurement method for the simultaneous assessment of respiration and heart rates in preterm infants. Rev. Sci. Instrum. 84, 121705 (2013).

CAS  PubMed  Google Scholar 

Sato, S. et al. Assessment of a new piezoelectric transducer sensor for noninvasive cardiorespiratory monitoring of newborn infants in the NICU. Neonatology 98, 179–190 (2010).

PubMed  Google Scholar 

Grubb, M. R. et al. Forehead reflectance photoplethysmography to monitor heart rate: preliminary results from neonatal patients. Physiol. Meas. 35, 881–893 (2014).

CAS  PubMed  Google Scholar 

Simmen, P. et al. Multichannel esophageal heart rate monitoring of preterm infants. IEEE Trans. Biomed. Eng. 68, 1903–1912 (2021).

PubMed  Google Scholar 

Kraaijenga, J. V., Hutten, G. J., de Jongh, F. H. & van Kaam, A. H. Transcutaneous electromyography of the diaphragm: a cardio-respiratory monitor for preterm infants. Pediatr. Pulmonol. 50, 889–895 (2015).

PubMed  Google Scholar 

Cabrera-Quiros, L. et al. Estimation of heart rate directly from ECG spectrogram in neonate intensive care units. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2020, 320–323 (2020).

Google Scholar 

Abdel-Rahman, Y., Jeremic, A. & Tan, K. Neonatal heart rate prediction. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. https://doi.org/10.1109/iembs.2009.5334205 (2009).

Badke, C. M., Marsillio, L. E., Weese-Mayer, D. E. & Sanchez-Pinto, L. N. Autonomic nervous system dysfunction in pediatric sepsis. Front. Pediatr. 6, 280 (2018).

PubMed  PubMed Central  Google Scholar 

Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 17, 354–381 (1996)..

Mayampurath, A., Volchenboum, S. L. & Sanchez-Pinto, L. N. Using photoplethysmography data to estimate heart rate variability and its association with organ dysfunction in pediatric oncology patients. NPJ Digit. Med. 1, 29 (2018).

PubMed  PubMed Central  Google Scholar 

Litton, E. & Morgan, M. The PiCCO monitor: a review. Anaesth. Intensive Care 40, 393–408 (2012).

CAS  PubMed  Google Scholar 

Egan, J. R. et al. Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med. 31, 568–573 (2005).

PubMed  Google Scholar 

Fakler, U. et al. Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery. J. Thorac. Cardiovasc. Surg. 133, 224–228 (2007).

CAS  PubMed  Google Scholar 

Aslan, N. et al. Comparison of cardiac output and cardiac index values measured by critical care echocardiography with the values measured by pulse index continuous cardiac output (PiCCO) in the pediatric intensive care unit: a preliminary study. Ital. J. Pediatr. 46, 47 (2020).

PubMed  PubMed Central  Google Scholar 

Gergely, M. et al. Assessment of global tissue perfusion and oxygenation in neonates and infants after open-heart surgery. Interact. Cardiovasc. Thorac. Surg. 18, 426–431 (2014).

PubMed  PubMed Central  Google Scholar 

Calamandrei, M. et al. Assessment of cardiac output in children: a comparison between the pressure recording analytical method and Doppler echocardiography. Pediatr. Crit. Care Med. 9, 310–312 (2008).

PubMed  Google Scholar 

Saxena, R., Durward, A., Puppala, N. K., Murdoch, I. A. & Tibby, S. M. Pressure recording analytical method for measuring cardiac output in critically ill children: a validation study. Br. J. Anaesth. 110, 425–431 (2013).

CAS  PubMed  Google Scholar 

Gatelli, I. F., Vitelli, O., Chiesa, G., De Rienzo, F. & Martinelli, S. Noninvasive cardiac output monitoring in newborn with hypoplastic left heart syndrome. Am. J. Perinatol. 37, S54–S56 (2020).

PubMed  Google Scholar 

Blohm, M. E. et al. Impedance cardiography (electrical velocimetry) and transthoracic echocardiography for non-invasive cardiac output monitoring in pediatric intensive care patients: a prospective single-center observational study. Crit. Care 18, 603 (2014).

PubMed  PubMed Central  Google Scholar 

Schubert, S. et al. Continuous, non-invasive techniques to determine cardiac output in children after cardiac surgery: evaluation of transesophageal Doppler and electric velocimetry. J. Clin. Monit. Comput. 22, 299–307 (2008).

PubMed  Google Scholar 

Lee, J. Y. et al. The ability of stroke volume variation measured by a noninvasive cardiac output monitor to predict fluid responsiveness in mechanically ventilated children. Pediatr. Cardiol. 35, 289–294 (2014).

PubMed  Google Scholar 

Botte, A. et al. Evaluation of a noninvasive cardiac output monitor in mechanically ventilated children. Pediatr. Crit. Care Med. 7, 231–236 (2006).

PubMed  Google Scholar 

Gil-Anton, J. et al. Cardiac index monitoring by femoral arterial thermodilution after cardiac surgery in children. J. Crit. Care 29, 1132.e1–4 (2014).

Google Scholar 

Bay-Hansen, R., Elfving, B. & Greisen, G. Use of near infrared spectroscopy for estimation of peripheral venous saturation in newborns: comparison with co-oximetry of central venous blood. Biol. Neonate 82, 1–8 (2002).

PubMed  Google Scholar 

Massa-Buck, B., Amendola, V., McCloskey, R. & Rais-Bahrami, K. Significant correlation between regional tissue oxygen saturation and vital signs of critically ill infants. Front. Pediatr. 5, 276 (2017).

Dabal, R. J. et al. Inferior vena cava oxygen saturation monitoring after the Norwood procedure. Ann. Thorac. Surg. 95, 2114–2120 (2013). discussion 2120–2121.

PubMed  Google Scholar 

Gillam-Krakauer, M. et al. Correlation of abdominal rSO2 with superior mesenteric artery velocities in preterm infants. J. Perinatol. 33, 609–612 (2013).

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif