Large-scale brain network dynamics in very preterm children and relationship with socio-emotional outcomes: an exploratory study

Volpe, J. J. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 (2009).

PubMed  PubMed Central  Google Scholar 

Ellard, K. K., Uribe, S. & Funes, C. J. In The Neuroscience of Depression 277–299 (Elsevier, 2021).

Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

CAS  PubMed  Google Scholar 

Van Den Heuvel, M. P. & Pol, H. E. H. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 (2010).

PubMed  Google Scholar 

Biswal, B., Zerrin Yetkin, F., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

CAS  PubMed  Google Scholar 

Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. cortex 19, 72–78 (2009).

PubMed  Google Scholar 

Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Skudlarski, P. et al. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43, 554–561 (2008).

PubMed  Google Scholar 

Preti, M. G., Bolton, T. A. & Van De Ville, D. The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage 160, 41–54 (2017).

PubMed  Google Scholar 

Johns, C. B., Lacadie, C., Vohr, B., Ment, L. R. & Scheinost, D. Amygdala functional connectivity is associated with social impairments in preterm born young adults. Neuroimage Clin. 21, 101626 (2019).

PubMed  Google Scholar 

Wilke, M., Hauser, T. K., Krägeloh‐Mann, I. & Lidzba, K. Specific impairment of functional connectivity between language regions in former early preterms. Hum. Brain Mapp. 35, 3372–3384 (2014).

PubMed  Google Scholar 

Carter, A. S., Briggs‐Gowan, M. J. & Davis, N. O. Assessment of young children’s social‐emotional development and psychopathology: recent advances and recommendations for practice. J. Child Psychol. 45, 109–134 (2004).

Google Scholar 

Papini, C. et al. Altered resting-state functional connectivity in emotion-processing brain regions in adults who were born very preterm. Psychol. Med. 46, 3025–3039 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Wehrle, F. M. et al. Altered resting-state functional connectivity in children and adolescents born very preterm. Neuroimage Clin. 20, 1148–1156 (2018).

PubMed  PubMed Central  Google Scholar 

Lordier, L. et al. Music in premature infants enhances high-level cognitive brain networks. Proc. Natl Acad. Sci. USA 116, 12103–12108 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

White, T. P. et al. Dysconnectivity of neurocognitive networks at rest in very-preterm born adults. Neuroimage Clin. 4, 352–365 (2014).

PubMed  PubMed Central  Google Scholar 

Damaraju, E. et al. Resting-state functional connectivity differences in premature children. Front. Syst. Neurosci. 4, 23 (2010).

PubMed  PubMed Central  Google Scholar 

Ball, G. et al. Machine-learning to characterise neonatal functional connectivity in the preterm brain. Neuroimage 124, 267–275 (2016).

CAS  PubMed  Google Scholar 

Christoff, K., Irving, Z. C., Fox, K. C., Spreng, R. N. & Andrews-Hanna, J. R. Mind-wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17, 718–731 (2016).

CAS  PubMed  Google Scholar 

Karahanoğlu, F. I. & Van De Ville, D. Dynamics of large-scale fMRI networks: deconstruct brain activity to build better models of brain function. Curr. Opin. Biomed. Eng. 3, 28–36 (2017).

Google Scholar 

Zöller, D. M. et al. Robust recovery of temporal overlap between network activity using transient-informed spatio-temporal regression. IEEE Trans. Med. Imaging 38, 291–302 (2018).

PubMed  Google Scholar 

Karahanoğlu, F. I. & Van De Ville, D. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nat. Commun. 6, 1–10 (2015).

Google Scholar 

Zöller, D. et al. Large-scale brain network dynamics provide a measure of psychosis and anxiety in 22q11. 2 deletion syndrome. Biol. Psychiatry. Cogn. Neurosci. Neuroimaging 4, 881–892 (2019).

PubMed  Google Scholar 

Piguet, C., Karahanoğlu, F. I., Saccaro, L. F., Van De Ville, D. & Vuilleumier, P. Mood disorders disrupt the functional dynamics, not spatial organization of brain resting state networks. Neuroimage Clin. 32, 102833 (2021).

PubMed  PubMed Central  Google Scholar 

Johnson, S. & Marlow, N. Preterm birth and childhood psychiatric disorders. Pediatr. Res. 69, 11–18 (2011).

Google Scholar 

Arpi, E. & Ferrari, F. Preterm birth and behaviour problems in infants and preschool‐age children: a review of the recent literature. Dev. Med. Child Neurol. 55, 788–796 (2013).

PubMed  Google Scholar 

Reyes, L. M., Jaekel, J., Bartmann, P. & Wolke, D. Peer relationship trajectories in very preterm and term individuals from childhood to early adulthood. J. Dev. Behav. Pediatr. 42, 621–630 (2021).

PubMed  Google Scholar 

Montagna, A. & Nosarti, C. Socio-emotional development following very preterm birth: pathways to psychopathology. Front. Psychol. 7, 80 (2016).

PubMed  PubMed Central  Google Scholar 

Izard, C. E. Forms and functions of emotions: matters of emotion–cognition interactions. Emot. Rev. 3, 371–378 (2011).

Google Scholar 

Witt, A. et al. Emotional and effortful control abilities in 42-month-old very preterm and full-term children. Early Hum. Dev. 90, 565–569 (2014).

PubMed  Google Scholar 

Langerock, N. et al. Emotional reactivity at 12 months in very preterm infants born at < 29 weeks of gestation. Infant Behav. Dev. 36, 289–297 (2013).

CAS  PubMed  Google Scholar 

Hille, E. T. et al. Behavioural problems in children who weigh 1000 g or less at birth in four countries. Lancet 357, 1641–1643 (2001).

CAS  PubMed  Google Scholar 

Bhutta, A. T., Cleves, M. A., Casey, P. H., Cradock, M. M. & Anand, K. J. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288, 728–737 (2002).

PubMed  Google Scholar 

Landry, S. H., Chapieski, M. L., Richardson, M. A., Palmer, J. & Hall, S. The social competence of children born prematurely: effects of medical complications and parent behaviors. Child Dev. 61, 1605–1616 (1990).

CAS  PubMed  Google Scholar 

Healy, E. et al. Preterm birth and adolescent social functioning–alterations in emotion-processing brain areas. J. Pediatr. 163, 1596–1604 (2013).

PubMed  Google Scholar 

Johnson, S. et al. Psychiatric disorders in extremely preterm children: longitudinal finding at age 11 years in the Epicure Study. J. Am. Acad. Child Adolesc. Psychiatry 49, 453–463.e451 (2010).

PubMed  Google Scholar 

Treyvaud, K. et al. Psychiatric outcomes at age seven for very preterm children: rates and predictors. J. Child Psychol. 54, 772–779 (2013).

Google Scholar 

Jones, K. M., Champion, P. R. & Woodward, L. J. Social competence of preschool children born very preterm. Early Hum. Dev. 89, 795–802 (2013).

PubMed  PubMed Central  Google Scholar 

Johnson, S., Gilmore, C., Gallimore, I., Jaekel, J. & Wolke, D. The long‐term consequences of preterm birth: what do teachers know? Dev. Med. Child Neurol. 57, 571–577 (2015).

PubMed  Google Scholar 

Briggs-Gowan, M. J. & Carter, A. S. Social-emotional screening status in early childhood predicts elementary school outcomes. Pediatrics 121, 957–962 (2008).

PubMed  Google Scholar 

Saigal, S. et al. Health, wealth, social integration, and sexuality of extremely low-birth-weight prematurely born adults in the fourth decade of life. JAMA Pediatr. 170, 678–686 (2016).

PubMed  Google Scholar 

Mendonça, M., Bilgin, A. & Wolke, D. Association of preterm birth and low birth weight with romantic partnership, sexual intercourse, and parenthood in adulthood: a systematic review and meta-analysis. JAMA Netw. Open 2, e196961 (2019).

PubMed  PubMed Central  Google Scholar 

Nosarti, C. et al. Preterm birth and psychiatric disorders in young adult life. Arch. Gen. Psychiatry 69, 610–617 (2012).

Google Scholar 

Walshe, M. et al. Psychiatric disorder in young adults born very preterm: role of family history. Eur. Psychiatry 23, 527–531 (2008).

CAS  PubMed  Google Scholar 

Räikkönen, K. et al. Depression in young adults with very low birth weight: the Helsinki study of very low-birth-weight adults. Arch. Gen. Psychiatry 65, 290–296 (2008).

PubMed  Google Scholar 

Taylor, H. G. Neurodevelopmental origins of social competence in very preterm children. In Seminars in Fetal and Neonatal Medicine. 25, 101108 (Elsevier, 2020).

Clark, C. A., Woodward, L. J., Horwood, L. J. & Moor, S. Development of emotional and behavioral regulation in children born extremely preterm and very preterm: biological and social influences. Child Dev. 79, 1444–1462 (2008).

Spittle, A. J. et al. Early emergence of behavior and social-emotional problems in very preterm infants. J. Am. Acad. Child Adolesc. Psychiatry 48, 909–918 (2009).

PubMed  Google Scholar 

Fischi-Gomez, E. et al. Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition. Cereb. Cortex 25, 2793–2805 (2015).

PubMed  Google Scholar 

Loe, I. M., Lee, E. S. & Feldman, H. M. Attention and internalizing behaviors in relation to white matter in children born preterm. J. Dev. Behav. Pediatr. 34, 156 (2013).

PubMed  PubMed Central  Google Scholar 

Rogers, C. E. et al. Regional cerebral development at term relates to school-age social–emotional development in very preterm children. J. Am. Acad. Child Adolesc. Psychiatry 51, 181–191 (2012).

PubMed  PubMed Central  Google Scholar 

Zubiaurre-Elorza, L. et al. Cortical thickness and behavior abnormalities in children born preterm. PLoS One 7, e42148 (2012).

Kanel, D. et al. Neonatal white matter microstructure and emotional development during the preschool years in children who were born very preterm. eNeuro 8, ENEURO.0546-20.2021 (2021).

Rogers, C. E. et al. Altered gray matter volume and school age anxiety in children born late preterm. J. Pediatri. 165, 928–935 (2014).

留言 (0)

沒有登入
gif