The emerging role of exosomes in radiotherapy

Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T, Gerard JP. Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol. 2013;10(1):52–60. https://doi.org/10.1038/nrclinonc.2012.203.

Article  CAS  PubMed  Google Scholar 

Bourhis J, Overgaard J, Audry H, Ang KK, Saunders M, Bernier J, Horiot JC, Le Maitre A, Pajak TF, Poulsen MG, et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet. 2006;368(9538):843–54. https://doi.org/10.1016/S0140-6736(06)69121-6.

Article  PubMed  Google Scholar 

Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 2003;3(2):117–29. https://doi.org/10.1038/nrc992.

Article  CAS  PubMed  Google Scholar 

Wang H, Yu KN, Hou J, Liu Q, Han W. Radiation-induced bystander effect: early process and rapid assessment. Cancer Lett. 2015;356(1):137–44. https://doi.org/10.1016/j.canlet.2013.09.031.

Article  CAS  PubMed  Google Scholar 

Du Y, Du S, Liu L, Gan F, Jiang X, Wangrao K, Lyu P, Gong P, Yao Y. Radiation-induced bystander effect can be transmitted through exosomes using miRNAs as effector molecules. Radiat Res. 2020;194(1):89–100. https://doi.org/10.1667/RADE-20-00019.1.

Article  CAS  PubMed  Google Scholar 

Xu S, Wang J, Ding N, Hu W, Zhang X, Wang B, Hua J, Wei W, Zhu Q. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol. 2015;412(12):1355–63. https://doi.org/10.1080/15476286.2015.1100795.

Article  Google Scholar 

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:6478. https://doi.org/10.1126/science.aau6977.

Article  CAS  Google Scholar 

Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902.

Article  CAS  PubMed  Google Scholar 

McAndrews KM, Kalluri R. Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer. 2019;18(1):52. https://doi.org/10.1186/s12943-019-0963-9.

Article  PubMed  PubMed Central  Google Scholar 

Simons M, Raposo G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575–81. https://doi.org/10.1016/j.ceb.2009.03.007.

Article  CAS  PubMed  Google Scholar 

Casado S, Lobo M, Paino CL. Dynamics of plasma membrane surface related to the release of extracellular vesicles by mesenchymal stem cells in culture. Sci Rep. 2017;7(1):6767. https://doi.org/10.1038/s41598-017-07265-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Granger E, McNee G, Allan V, Woodman P. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol. 2014;31:20–9. https://doi.org/10.1016/j.semcdb.2014.04.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30. https://doi.org/10.1038/ncb2000.

Article  CAS  PubMed  Google Scholar 

Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, Ostrowski M, Thery C. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 2012;72(19):4920–30. https://doi.org/10.1158/0008-5472.CAN-12-0925.

Article  CAS  PubMed  Google Scholar 

Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, Tyska MJ, Weaver AM. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 2013;5(5):1159–68. https://doi.org/10.1016/j.celrep.2013.10.050.

Article  CAS  PubMed  Google Scholar 

Ostenfeld MS, Jeppesen DK, Laurberg JR, Boysen AT, Bramsen JB, Primdal-Bengtson B, Hendrix A, Lamy P, Dagnaes-Hansen F, Rasmussen MH, et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 2014;74(20):5758–71. https://doi.org/10.1158/0008-5472.CAN-13-3512.

Article  CAS  PubMed  Google Scholar 

Jahn R, Scheller RH. SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631–43. https://doi.org/10.1038/nrm2002.

Article  CAS  PubMed  Google Scholar 

Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323–31. https://doi.org/10.1016/s0092-8674(00)81871-1.

Article  CAS  PubMed  Google Scholar 

Jin S, Levine AJ. The p53 functional circuit. J Cell Sci. 2001;114(Pt 23):4139–40.

Article  CAS  PubMed  Google Scholar 

Goldberg Z, Lehnert BE. Radiation-induced effects in unirradiated cells: a review and implications in cancer. Int J Oncol. 2002;21(2):337–49.

CAS  PubMed  Google Scholar 

Snyder AR. Review of radiation-induced bystander effects. Hum Exp Toxicol. 2004;23(2):87–9. https://doi.org/10.1191/0960327104ht423oa.

Article  PubMed  Google Scholar 

Azzam EI, Little JB. The radiation-induced bystander effect: evidence and significance. Hum Exp Toxicol. 2004;23(2):61–5. https://doi.org/10.1191/0960327104ht418oa.

Article  PubMed  Google Scholar 

Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 2006;66(9):4795–801. https://doi.org/10.1158/0008-5472.CAN-05-4579.

Article  CAS  PubMed  Google Scholar 

Cheema AK, Hinzman CP, Mehta KY, Hanlon BK, Garcia M, Fatanmi OO, Singh VK. Plasma derived exosomal biomarkers of exposure to ionizing radiation in nonhuman primates. Int J Mol Sci. 2018;19(11):3427. https://doi.org/10.3390/ijms19113427.

Article  CAS  PubMed Central  Google Scholar 

Jabbari N, Nawaz M, Rezaie J. Ionizing radiation increases the activity of exosomal secretory pathway in MCF-7 human breast cancer cells: a possible way to communicate resistance against radiotherapy. Int J Mol Sci. 2019;20(15):3649. https://doi.org/10.3390/ijms20153649.

Article  CAS  PubMed Central  Google Scholar 

Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, Terrian DM. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008;68(19):7864–71. https://doi.org/10.1158/0008-5472.CAN-07-6538.

Article  CAS  PubMed  Google Scholar 

Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G, Marine JC, Vidal M, Amson R, Telerman A. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 2008;15(11):1723–33. https://doi.org/10.1038/cdd.2008.104.

Article  CAS  PubMed  Google Scholar 

Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, Zhang G, Tofilon PJ, Camphausen KA. Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol. 2013;6(6):638–48. https://doi.org/10.1593/tlo.13640.

Article  PubMed  PubMed Central  Google Scholar 

Abramowicz A, Labaj W, Mika J, Szoltysek K, Slezak-Prochazka I, Mielanczyk L, Story MD, Pietrowska M, Polanski A, Widlak P. MicroRNA profile of exosomes and parental cells is differently affected by ionizing radiation. Radiat Res. 2020;194(2):133–42. https://doi.org/10.1667/RADE-20-00007.

Article  CAS  PubMed  Google Scholar 

Al-Abedi R, Tuncay Cagatay S, Mayah A, Brooks SA, Kadhim M. Ionising radiation promotes invasive potential of breast cancer cells: the role of exosomes in the process. Int J Mol Sci. 2021;22(21):11570. https://doi.org/10.3390/ijms222111570.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen YY, Jiang MJ, Tian L. Analysis of exosomal circRNAs upon irradiation in pancreatic cancer cell repopulation. BMC Med Genom. 2020;13(1):107. https://doi.org/10.1186/s12920-020-00756-3.

Article  CAS  Google Scholar 

Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie. 2007;89(2):205–12. https://doi.org/10.1016/j.biochi.2006.10.014.

Article  CAS  PubMed  Google Scholar 

Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, Kobayashi T, Salles JP, Perret B, Bonnerot C, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 2004;380(Pt 1):161–71. https://doi.org/10.1042/BJ20031594.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andre F, Escudier B, Angevin E, Tursz T, Zitvogel L. Exosomes for cancer immunotherapy. Ann Oncol. 2004;15(Suppl 4):iv141-144. https://doi.org/10.1093/annonc/mdh918.

Article  PubMed  Google Scholar 

Roth TJ, Sheinin Y, Lohse CM, Kuntz SM, Frigola X, Inman BA, Krambeck AE, McKenney ME, Karnes RJ, Blute ML, et al. B7–H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 2007;67(16):7893–900. https://doi.org/10.1158/0008-5472.CAN-07-1068.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif