DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine

Sung H, Ferlay J, Siegel RL. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

Article  Google Scholar 

Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288–300. https://doi.org/10.21037/tlcr.2016.06.07.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamura T, Kurishima K, Nakazawa K, Kagohashi K, Ishikawa H, Satoh H, Hizawa N. Specific organ metastases and survival in metastatic non-small-cell lung cancer. Mole Clin Oncol. 2015;3(1):217–21. https://doi.org/10.3892/mco.2014.410.

Article  Google Scholar 

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3. https://doi.org/10.1101/gad.1787609.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng T, Zhan X. Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA J. 2017;8(1):51–60. https://doi.org/10.1007/s13167-017-0083-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018;9(1):77–102. https://doi.org/10.1007/s13167-018-0128-8.

Article  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O, Costigliola V. EPMA General report & recommendations in predictive, preventive and personalised medicine 2012: white paper of the European Association for Predictive Preventive Personalised Medicine. EPMA J. 2012;3(1):14. https://doi.org/10.1186/1878-5085-3-14.

Article  PubMed  PubMed Central  Google Scholar 

Golubnitschaja O, Filep N, Yeghiazaryan K, Blom HJ, Hofmann-Apitius M, Kuhn W. Multi-omic approach decodes paradoxes of the triple-negative breast cancer: lessons for predictive, preventive and personalised medicine. Amino Acids. 2018;50(3–4):383–95. https://doi.org/10.1007/s00726-017-2524-0.

Article  CAS  PubMed  Google Scholar 

Greenberg MVC. Bourc’his D, The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607. https://doi.org/10.1038/s41580-019-0159-6.

Article  CAS  PubMed  Google Scholar 

Koziol MJ, Bradshaw CR, Allen GE, Costa ASH, Frezza C, Gurdon JB. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat Struct Mol Biol. 2016;23(1):24–30. https://doi.org/10.1038/nsmb.3145.

Article  CAS  PubMed  Google Scholar 

Liu J, Zhu Y, Luo GZ, Wang X, Yue Y, Wang X, Zong X, Chen K, Yin H, Fu Y, et al. Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat Commun. 2016;7:13052. https://doi.org/10.1038/ncomms13052.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, Liu Y, Byrum SD, Mackintosh SG, Zhong M, et al. DNA methylation on N(6)-adenine in mammalian embryonic stem cells. Nature. 2016;532(7599):329–33. https://doi.org/10.1038/nature17640.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao Z, Wu T, Cui X, Zhu P, Tan C, Dou X, Hsu KW, Lin YT, Peng PH, Zhang LS, et al. N(6)-Deoxyadenosine methylation in mammalian mitochondrial DNA. Mol Cell. 2020;78(3):382-395.e388. https://doi.org/10.1016/j.molcel.2020.02.018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Musheev MU. Baumgne, The origin of genomic N(6)-methyl-deoxyadenosine in mammalian cells. Nat Chem Biol. 2020;16(6):630–4. https://doi.org/10.1038/s41589-020-0504-2.

Article  CAS  PubMed  Google Scholar 

Liu X, Lai W, Li Y, Chen S, Liu B, Zhang N, Mo J, Lyu C, Zheng J, Du YR, et al. N(6)-methyladenine is incorporated into mammalian genome by DNA polymerase. Cell Res. 2021;31(1):94–7. https://doi.org/10.1038/s41422-020-0317-6.

Article  CAS  PubMed  Google Scholar 

Pfaffeneder T, Spada F, Wagner M, Brandmayr C, Laube SK, Eisen D, Truss M, Steinbacher J, Hackner B, Kotljarova O, et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat Chem Biol. 2014;10(7):574–81. https://doi.org/10.1038/nchembio.1532.

Article  CAS  PubMed  Google Scholar 

Roberts SA, Gordenin DA. Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer. 2014;14(12):786–800. https://doi.org/10.1038/nrc3816.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan B, Jiang Y, Wang Y, Wang Y. Efficient formation of the tandem thymine glycol/8-oxo-7,8-dihydroguanine lesion in isolated DNA and the mutagenic and cytotoxic properties of the tandem lesions in Escherichia coli cells. Chem Res Toxicol. 2010;23(1):11–9. https://doi.org/10.1021/tx9004264.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai Y, Yuan BF, Feng YQ. Quantification and mapping of DNA modifications. RSC Chem Biol. 2021;2(4):1096–114. https://doi.org/10.1039/d1cb00022e.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948Aug;175(1):315–32.

Article  CAS  PubMed  Google Scholar 

Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet. 2018;392(10149):777–86. https://doi.org/10.1016/s0140-6736(18)31268-6.

Article  CAS  PubMed  Google Scholar 

Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28. https://doi.org/10.1038/nrg816.

Article  CAS  PubMed  Google Scholar 

Heyn H, Esteller M. An adenine code for DNA: a second life for N6-methyladenine. Cell. 2015;161(4):710–3. https://doi.org/10.1016/j.cell.2015.04.021.

Article  CAS  PubMed  Google Scholar 

Luo GZ, He C. DNA N(6)-methyladenine in metazoans: functional epigenetic mark or bystander? Nat Struct Mol Biol. 2017;24(6):503–6. https://doi.org/10.1038/nsmb.3412.

Article  CAS  PubMed  Google Scholar 

Chen T, Li E. Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol. 2006;301:179–201. https://doi.org/10.1007/3-540-31390-7_6.

Article  CAS  PubMed  Google Scholar 

Kim H, Kwon YM, Kim JS, Han J, Shim YM, Park J, Kim DH. Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer. 2006;107(5):1042–9. https://doi.org/10.1002/cncr.22087.

Article  CAS  PubMed  Google Scholar 

Husni RE, Shiba-Ishii A, Iiyama S, Shiozawa T, Kim Y, Nakagawa T, Sato T, Kano J, Minami Y, Noguchi M. DNMT3a expression pattern and its prognostic value in lung adenocarcinoma. Lung Cancer. 2016;97:59–65. https://doi.org/10.1016/j.lungcan.2016.04.018.

Article  PubMed  Google Scholar 

Gao Q, Steine EJ, Barrasa MI, Hockemeyer D, Pawlak M, Fu D, Reddy S, Bell GW, Jaenisch R. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci U S A. 2011;108(44):18061–6. https://doi.org/10.1073/pnas.1114946108.

Article  PubMed  PubMed Central  Google Scholar 

Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5. https://doi.org/10.1126/science.1170116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filipczak PT, Leng S, Tellez CS, Do KC, Grimes MJ, Thomas CL, Walton-Filipczak SR, Picchi MA, Belinsky SA. p53-suppressed oncogene TET1 prevents cellular aging in lung cancer. Cancer Res. 2019;79(8):1758–68. https://doi.org/10.1158/0008-5472.CAN-18-1234.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z, Riggs AD, Pfeifer GP. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A. 2008;105(1):252–7. https://doi.org/10.1073/pnas.0710735105.

Article  PubMed  Google Scholar 

Kalari S, Jung M, Kernstine KH, Takahashi T, Pfeifer GP. The DNA methylation landscape of small cell lung cancer suggests a differentiation defect of neuroendocrine cells. Oncogene. 2013;32(30):3559–68. https://doi.org/10.1038/onc.2012.362.

Article  CAS  PubMed  Google Scholar 

Brabender J, Usadel H, Danenberg KD, Metzger R, Schneider PM, Lord RV, Wickramasinghe K, Lum CE, Park J, Salonga D, et al. Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene. 2001;20(27):3528–32. https://doi.org/10.1038/sj.onc.1204455.

Article  CAS  PubMed  Google Scholar 

Yu Q, Guo Q, Chen L, Liu S. Clinicopathological significance and potential drug targeting of CDH1 in lung cancer: a meta-analysis and literature review. Drug Des Dev Ther. 2015;9:2171–8. https://doi.org/10.2147/dddt.s78537.

Article  CAS 

留言 (0)

沒有登入
gif