Resistance is futile? Mucosal immune mechanisms in the context of microbial ecology and evolution

Petkov, S. The fitness landscape metaphor: dead but not gone. http://journals.openedition.org/philosophiascientiae19, 159–174 (2015).

Mustonen, V. & Lässig, M. From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet. 25, 111–119 (2009).

CAS  PubMed  Google Scholar 

Lenski, R. E. & Travisano, M. Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc. Natl Acad. Sci. U.S.A. 91, 6808–6814 (1994).

CAS  PubMed  PubMed Central  Google Scholar 

Segers, A. & Depoortere, I. Circadian clocks in the digestive system. Nat. Rev. Gastroenterol. Hepatol. 18, 239–251 (2021).

PubMed  Google Scholar 

Yang, Y. & Zhang, J. Bile acid metabolism and circadian rhythms. Am. J. Physiol. Gastrointest. Liver Physiol. 319, G549–G563 (2020).

CAS  PubMed  Google Scholar 

Frazier, K. & Chang, E. B. Intersection of the gut microbiome and circadian rhythms in metabolism. Trends Endocrinol. Metab. 31, 25–36 (2020).

CAS  PubMed  Google Scholar 

Wang, Y. et al. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357, 912–916 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

He, C. et al. Circadian rhythm disruption influenced hepatic lipid metabolism, gut microbiota and promoted cholesterol gallstone formation in mice. Front. Endocrinol. 12, 723918 (2021).

Stearns, J. C. et al. Bacterial biogeography of the human digestive tract. Sci. Rep. 1, 170 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2015).

PubMed  PubMed Central  Google Scholar 

Cheng, H. M., Mah, K. K. & Seluakumaran, K. Intestinal Fluid Handling: Absorption. Defin. Physiol. Princ. Themes Concepts 2, 47–49 (2020).

Google Scholar 

Hoces, D. et al. Fitness advantage of Bacteroides thetaiotaomicron capsular polysaccharide is dependent on the resident microbiota. bioRxiv https://doi.org/10.1101/2022.06.19.496708 (2022).

Cremer, J., Arnoldini, M. & Hwa, T. Effect of water flow and chemical environment on microbiota growth and composition in the human colon. Proc. Natl Acad. Sci. U.S.A. 114, 6438–6443 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Arnoldini, M., Cremer, J. & Hwa, T. Bacterial growth, flow, and mixing shape human gut microbiota density and composition. Gut Microbes 1–8 https://doi.org/10.1080/19490976.2018.1448741 (2018).

Nguyen, J., Lara-Gutiérrez, J. & Stocker, R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol. Rev. 45, fuaa068 (2021).

Bell, G. Fluctuating selection: the perpetual renewal of adaptation in variable environments. Philos. Trans. R. Soc. B Biol. Sci. 365, 87–97 (2010).

Google Scholar 

Roemhild, R., Barbosa, C., Beardmore, R. E., Jansen, G. & Schulenburg, H. Temporal variation in antibiotic environments slows down resistance evolution in pathogenic Pseudomonas aeruginosa. Evol. Appl 8, 945–955 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Barreto, H. C., Abreu, B. & Gordo, I. Fluctuating selection on bacterial iron regulation in the mammalian gut. Curr. Biol. 32, 3261–3275.e4 (2022).

CAS  PubMed  Google Scholar 

Dapa, T., Ramiro, R. S., Pedro, M. F., Gordo, I. & Xavier, K. B. Diet leaves a genetic signature in a keystone member of the gut microbiota. Cell Host Microbe 30, 183–199.e10 (2022).

CAS  PubMed  Google Scholar 

Hartl, D. L. & Clark, A. G. Principles of Population Genetics. (Sinauer, 2007).

Groisman, E. A. & Ochman, H. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87, 791–794 (1996).

CAS  PubMed  Google Scholar 

McInnes, R. S., McCallum, G. E., Lamberte, L. E. & van Schaik, W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr. Opin. Microbiol. 53, 35–43 (2020).

CAS  PubMed  Google Scholar 

Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. U.S.A. 116, 17906–17915 (2019).

PubMed  PubMed Central  Google Scholar 

Barreto, H. C., Abreu, B. & Gordo, I. Fluctuating selection on bacterial iron regulation in the mammalian gut. Curr. Biol. https://doi.org/10.1016/J.CUB.2022.06.017 (2022).

Barroso-Batista, J. et al. The first steps of adaptation of escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 10, e1004182 (2014).

PubMed  PubMed Central  Google Scholar 

Diard, M. et al. A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nat. Microbiol. 6, 830–841 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Diard, M. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013).

CAS  PubMed  Google Scholar 

Ghalayini, M. et al. Long-term evolution of the natural isolate of Escherichia coli 536 in the mouse gut colonized after maternal transmission reveals convergence in the constitutive expression of the lactose operon. Mol. Ecol. 28, 4470–4485 (2019).

CAS  PubMed  Google Scholar 

Lescat, M. et al. Using long-term experimental evolution to uncover the patterns and determinants of molecular evolution of an Escherichia coli natural isolate in the streptomycin-treated mouse gut. Mol. Ecol. 26, 1802–1817 (2017).

CAS  PubMed  Google Scholar 

Yilmaz, B. et al. Long-term evolution and short-term adaptation of microbiota strains and sub-strains in mice. Cell Host Microbe 29, 650–663.e9 (2021).

CAS  PubMed  Google Scholar 

Diard, M. et al. Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium. Curr. Biol. 24, 2000–2005 (2014).

CAS  PubMed  Google Scholar 

Patrick, S. et al. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology 156, 3255–3269 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Porter, N. T., Canales, P., Peterson, D. A. & Martens, E. C. A subset of polysaccharide capsules in the human symbiont bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut. Cell Host Microbe 22, 494–506.e8 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Zhu, W. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 553, 208–211 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Kashyap, P. C. et al. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proc. Natl Acad. Sci. USA 110, 17059–17064 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Tropini, C. How the physical environment shapes the microbiota. mSystems 6, e0067521 (2021).

Tropini, C. et al. Transient osmotic perturbation causes long-term alteration to the gut microbiota. Cell 173, 1742–1754.e17 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Weiss, A. S. et al. In vitro interaction network of a synthetic gut bacterial community. ISME J. 16, 1095–1109 (2022).

CAS  PubMed  Google Scholar 

Gibbs, K. A. & Greenberg, E. P. Territoriality in Proteus: advertisement and aggression. Chem. Rev. 111, 188–194 (2011).

CAS  PubMed  Google Scholar 

Chatzidaki-Livanis, M., Geva-Zatorsky, N., Comstock, L. E. & Hooper, L. V. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc. Natl Acad. Sci. USA 113, 3627–3632 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 7, e37182 (2018).

Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

PubMed  Google Scholar 

Baquero, F., Lanza, V. F., Baquero, M. R., del Campo, R. & Bravo-Vázquez, D. A. Microcins in enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front. Microbiol. 10, 2261 (2019).

Jost, T., Lacroix, C., Braegger, C. & Chassard, C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr. Rev. 73, 426–437 (2015).

PubMed  Google Scholar 

Bode, L. Human milk oligosaccharides in the prevention of necrotizing enterocolitis: a journey from in vitro and in vivo models to mother-infant cohort studies. Front. Pediatr. 6, 385 (2018).

PubMed  PubMed Central  Google Scholar 

Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81 (2015).

PubMed  PubMed Central  Google Scholar 

Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: the case of akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).

PubMed  PubMed Central  Google Scholar 

Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

CAS  PubMed  Google Scholar 

Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302–2315.e12 (2021).

CAS  PubMed  Google Scholar 

Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).

PubMed  PubMed Central  Google Scholar 

Palmer, J. D. & Foster, K. R. Bacterial species rarely work together. Science 376, 581–582 (2022).

CAS 

留言 (0)

沒有登入
gif