A point-of-care ultrasound education curriculum for pediatric critical care medicine

This manuscript describes the development and implementation of a longitudinal evidence-based POCUS curriculum for pediatric intensive care providers at a single center. This curriculum was designed as an introductory course for learners without prior ultrasound training. A targeted needs assessment suggested a lack of prior training and educational opportunities for critical care fellows in diagnostic and procedural POCUS. There was heterogeneity in prior experience and comfort, but all learners intended to integrate diagnostic and procedural ultrasound in patient care. The curriculum allowed the learners in a busy environment to participate and engage in this educational opportunity. The learners’ knowledge and self-reported comfort with POCUS increased after the course.

This curriculum attempts to address the dearth of resources in pediatric critical care POCUS education using a single center’s experience and provides context and resources in which the implementation of this curriculum was successful. With the absence of pre-existing infrastructure, the pooling of resources at the authors’ institution through partnerships with adult and pediatric emergency medicine POCUS programs and leveraging non-institutional resources such as expert speakers from other institutions facilitated the dissemination of content. The PICU leadership and the divisions of radiology and cardiology acknowledged the benefit of POCUS education to critical care trainees and supported the curriculum. Two ultrasound machines equipped for diagnostic and procedural POCUS applications were available to the PICU providers at all times (Venue, General Electric Company, Waukesha, WI) The lectures and hands-on sessions were strategically scheduled after the transition of overnight patient care, and the trainees were provided protected educational time by faculty and advanced practice providers shouldering patient care responsibilities. In rare cases, when a trainee could not attend the scheduled academic session, the smaller size of the fellowship program permitted one-on-one time for catch-up. Hands-on sessions were supervised by critical care (V.B.) and emergency medicine (M.B.) faculty with formal training in POCUS through completing emergency ultrasound fellowships. Recordkeeping for quality assurance and credentials maintenance was done by manually archiving images and documenting using password-protected databases. A 7-week longitudinal curriculum was selected over shorter courses due to information retention concerns demonstrated in previous studies [15, 16]. A dedicated time was provided for the dissemination of this curriculum by the PICU leadership, which was different from the pre-existing educational conferences. This allowed prioritization of the ultrasound education without taking away time and focus from other educational opportunities for the trainees.

This curriculum differs from the previously published literature and the educational context in several ways. Conlon et al. published their experience implementing the POCUS curriculum in a pediatric critical care unit at a large academic center [7]. It included a 16-h introductory course with didactic and hands-on training provided by multidisciplinary educators. Thirteen critical care faculties and three trainees completed their initial course. Two faculty members met the requirements for credentialing in all core competencies, and two completed the requirement in hemodynamic POCUS by completing at least 25 acceptable exams after taking the course. They also demonstrated changes in patient care with the implementation of their curriculum. However, several factors may preclude the translation of this experience to other centers. Their POCUS program benefitted from the presence of six critical care faculty trained in POCUS and multiple other faculty in pediatric and adult emergency medicine and support from radiology and cardiology. A pre-existing pathway for credentialing also provided a clear path and structure to the curriculum. These resources and infrastructure may not be present at many other centers. Good et al. described their experience implementing POCUS education in a pediatric critical care unit for pediatric residents. They utilized asynchronous learning, where the residents self-completed three educational modules, followed by weekly one-hour supervised hands-on sessions. The residents were provided education during their month-long rotation in the PICU. Six residents completed the curriculum and demonstrated a significant improvement in test scores (55–90%) compared to historical cohorts. Educational resources were also published and made available for implementation at other centers. However, the scope of this curriculum was geared towards pediatric residents as opposed to pediatric critical care medicine specialists. Several high-quality, free open access resources are available online for POCUS education. These resources though not primarily geared towards pediatric critical care, can be collated, and utilized with some modifications to the content. A list of such educational resources is presented in (Additional file 11). In contrast, this curriculum provides a comprehensive resource that can serve as a framework for POCUS education for pediatric critical care trainees. The resource incorporates evidence-based literature and clinical scenarios that are relevant to the pediatric critical care practice. This curriculum can be time and resource-saving for educators that may not have time and resources available to collate resources from multiple sources or create their own.

Several factors hinder the adoption of POCUS education in pediatric critical care training programs [17]. In the results of an extensive national survey, 83% (43/52) of the respondents agreed that POCUS education should be a core component of pediatric critical care training. However, only 67% (35/52) of the programs provided trainee education in diagnostic POCUS. Other components of POCUS education, such as credentialing, documentation, image storage, and quality assurance, were present in less than 25% of the programs. The larger programs were more likely to have these components in place. Lack of trained ultrasound faculty and oversight were common barriers to implementing POCUS education [17]. Brant et al. evaluated a longitudinal POCUS curriculum for pediatric residents [18] and reported a 61–90% improvement in learner comfort with the utilization of POCUS in their cohort. However, the adoption of POCUS into clinical practice was limited in their study. More than 90% of the learners performed less than 5 POCUS exams in the three months after the dissemination of the curriculum. They cited similar reasons for the limited adaption in their cohort of learners. Only 3 out of 91 faculty (pediatric emergency medicine and pediatricians) were credentialed using POCUS. The smaller number of critical care trainees allowed us to implement this curriculum despite the limited availability of trained faculty. We pooled resources from multiple divisions to supervise and oversee the trainees. However, the feasibility of this practice in the long term and as the number of learners increases is unknown. Other institutions will likely have to develop creative solutions to address these barriers locally.

Competency in POCUS is utilizing provider knowledge, skills, and attitudes in patient care. It is broadly sub-structured into four domains: understanding the indications for performing an exam, acquiring appropriate images both in terms of suitability for the indication and quality, interpreting the exam, and finally integrating the exam in patient care [14]. The perfect tool for the assessment of learner competency is lacking. Nonetheless, tools such as written examination, image review, objective structured clinical examination (OSCE), standardized direct observation tool (SDOT), etc., are available at the discretion of the educators [19]. Utilizing these resources is time and resource intensive. This curriculum used written examination and direct observations to evaluate the success of the curriculum in achieving defined objectives. The learners took the written test before and at the end of the curriculum. All learners improved their individual test scores. The overall post-participation score improved significantly from a baseline of 59–75%. This is comparable to the improvement in the knowledge (from 60 to 80%) of a cohort of internal medicine residents training in thoracic ultrasonography [20]. Our post-interventions scores are slightly lower than a group of adult critical care trainees receiving a similar longitudinal curriculum. In this cohort, the post-interventions scores improved from 71 to 89% [21]. Direct observations were made during the hands-on session, whereby in-time feedback was provided to the learners to improve their image acquisition. Specifically, feedback was provided regarding the choice of the probe, image optimization using gain and depth, acquisition and optimization of views, and assessment.

Further, asynchronous feedback was provided to the learners through biweekly image review sessions. This curriculum did not assess the learners' integration of new skills into clinical practice. The number of studies performed or the change in patient management based on these studies was not evaluated by the curriculum and represented a limitation. OSCE and SDOT were not performed for competency assessment as part of this curriculum due to the lack of time and resources.

Limitations to generalizability

This curriculum was implemented in a small cohort of pediatric critical care trainees and faculty and was subject to institutional biases. This may have contributed to the successful implementation of the curriculum as it allowed effective utilization of the limited resources and personnel. Educational program implementation is widely dependent on institutional factors, and additional work, optimally in a multi-institutional consensus fashion, is essential for determining common elements necessary for ultrasound education in pediatric critical care medicine as a specialty. A few factors can limit the applicability of this curriculum to other settings. First, this curriculum is based on the latest evidence compiled by the ESPNIC group and other well-curated reviews for patients admitted to pediatric critical care [3, 12]. While the principles and practices of POCUS remain the same, its applicability based on the setting is quite variable. This curriculum was delivered over seven weeks. This may not be feasible in specific programs and may need to be delivered over shorter or longer periods. The dissemination benefitted from the simultaneous availability of critical care trainees. However, this may not be replicable as it is at a different institution and may require adaptation based on local practices. Asynchronous learning through recorded lectures or dissemination of resources in this curriculum can be an alternative when limited by the simultaneous availability of critical care trainees. A lack of faculty with interest or training in POCUS can be a barrier to implementing this curriculum. In such cases, the training programs can tap on expertise outside the division, including emergency medicine, cardiology, or radiology or even their adult counterparts that may have already established their own training programs. The training programs can also seek help outside their institution to bring in experience and expertise that may not be available locally. Ultrasound machine availability is also a potential limitation for implementation at some centers that would require resource allocation.

留言 (0)

沒有登入
gif