Defects of microtubule cytoskeletal organization in NOA human testes

Chandra A, Copen CE, Stephen EH: Infertility service use in the United States: data from the National Survey of Family Growth, 1982–2010. Natl Health Stat Report 2014:1–21.

Thonneau P, Marchand S, Tallec A, Ferial ML, Ducot B, Lansac J, Lopes P, Tabaste JM, Spira A. Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988–1989). Hum Reprod. 1991;6:811–6.

CAS  PubMed  Google Scholar 

Flannigan R, Schlegel PN. Genetic diagnostics of male infertility in clinical practice. Best Pract Res Clin Obstet Gynaecol. 2017;44:26–37.

PubMed  Google Scholar 

Flannigan R, Goldstein M: Male infertility. Evaluation and treatment. In: Spermatogenesis: Biology and Clinical Implications Ed Cheng CY New York, CRC Press, pp 139–154 2018.

Jarvi K, Lo K, Grober E, Mak V, Fischer A, Grantmyre J, Zini A, Chan P, Patry G, Chow V, Domes T. The workup and management of azoospermic males. Can Urol Assoc J. 2015;9:229–35.

PubMed  PubMed Central  Google Scholar 

Jarow JP, Espeland MA, Lipshultz LI. Evaluation of the azoospermic patient. J Urol. 1989;142:62–5.

CAS  PubMed  Google Scholar 

Kumar R. Medical management of non-obstrutive azoospermia. Clinics. 2013;68(Suppl 1):75–9.

PubMed  PubMed Central  Google Scholar 

Cannarella R, Barbagallo F, Crafa A, La Vignera S, Condorelli RA, Calogero AE. Seminal Plasma Transcriptome and Proteome: Towards a Molecular Approach in the Diagnosis of Idiopathic Male Infertility. Int J Mol Sci. 2020;21(19):7308.

CAS  PubMed Central  Google Scholar 

Tournaye H, Krausz C, Oates RD. Concepts in diagnosis and therapy for male reproductive impairment. Lancet Diabetes Endocrinol. 2017;5:554–64.

PubMed  Google Scholar 

Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017;5:544–53.

PubMed  Google Scholar 

Castañeda JM, Miyata H, Ikawa M, Matzuk MM. Sperm Defects. In: Skinner MK, editor. Encyclopedia of Reproduction (Second Edition). Oxford: Academic Press; 2018. p. 276–81.

Google Scholar 

Wosnitzer M, Goldstein M, Hardy MP. Review of azoospermia. Spermatogenesis. 2014;4:e28218.

PubMed  PubMed Central  Google Scholar 

Jarvi K, Lo K, Fischer A, Grantmyre J, Zini A, Chow V, Mak V. CUA Guideline: The workup of azoospermic males. Can Urol Assoc J. 2010;4:163–7.

PubMed  PubMed Central  Google Scholar 

Esteves SC. Clinical management of infertile men with nonobstructive azoospermia. Asian J Androl. 2015;17:459–70.

PubMed  PubMed Central  Google Scholar 

Dimitriadis F, Adonakis G, Kaponis A, Mamoulakis C, Takenaka A, Sofikitis N: Pre-testicular, testicular, and post-testicular causes of male infertility. In: Simoni M, Huhtaniemi I (Eds) Endocinology of the Testis and Male Reproduction Endocrinology Springer, Cham https://doi.org/10.1007/978-30319-29456-8_33-2, pp 1–47 2017.

Lee JH, Gye MC, Choi KW, Hong JY, Lee YB, Park DW, Lee SJ, Min CK. In vitro differentiation of germ cells from nonobstructive azoospermic patients using three-dimensional culture in a collagen gel matrix. Fertil Steril. 2007;87:824–33.

CAS  PubMed  Google Scholar 

Schulze W, Thoms F, Knuth UA. Testicular sperm extraction: comprehensive analysis with simultaneously performed histology in 1418 biopsies from 766 subfertile men. Hum Reprod. 1999;14(Suppl 1):82–96.

PubMed  Google Scholar 

McLachlan RI, Rajpert-De Meyts E, Hoei-Hansen CE, de Kretser DM, Skakkebaek NE. Histological evaluation of the human testis - Approaches to optimizing the clinical value of the assessment: Mini Review. Hum Reprod. 2007;22:2–16.

CAS  PubMed  Google Scholar 

Shiraishi K, Tabara M, Matsuyama H. Transcriptome Analysis to Identify Human Spermatogonial Cells from Sertoli Cell-Only Testes. J Urol. 2020;203:809–16.

PubMed  Google Scholar 

Yao C, Zhao L, Tian R, Li P, Zhu Z, Xue Y, Chen H, Gong Y, Liu N, Yang C, et al. Seminiferous tubule molecular imaging for evaluation of male fertility: Seeing is believing. Tissue Cell. 2019;58:24–32.

PubMed  Google Scholar 

Abofoul-Azab M, Lunenfeld E, Levitas E, Zeadna A, Younis JS, Bar-Ami S, Huleihel M. Identification of Premeiotic, Meiotic, and Postmeiotic Cells in Testicular Biopsies Without Sperm from Sertoli Cell-Only Syndrome Patients. Int J Mol Sci. 2019;20:470.

CAS  PubMed Central  Google Scholar 

Schoor RA, Elhanbly S, Niederberger CS, Ross LS. The role of testicular biopsy in the modern management of male infertility. J Urol. 2002;167:197–200.

PubMed  Google Scholar 

Johnson KJ. Testicular histopathology associated with disruption of the Sertoli cell cytoskeleton. Spermatogenesis. 2014;4:e979106. https://doi.org/10.4161/21565562.2014.979106.

Article  PubMed  Google Scholar 

Boekelheide K, Fleming SL, Allio T, Embree-Ku ME, Hall SJ, Johnson KJ, Kwon EJ, Patel SR, Rasoulpour RJ, Schoenfeld HA, Thompson S. 2,5-Hexanedione-induced testicular injury. Annu Rev Pharmacol Toxciol. 2003;43:125–47.

CAS  Google Scholar 

O’Donnell L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis. 2014;4:e979623.

PubMed  Google Scholar 

Wang L, Yan M, Wu S, Mao B, Wong CKC, Ge R, Sun F, Cheng CY. Microtubule Cytoskeleton and Spermatogenesis-Lesson From Studies of Toxicant Models. Toxicol Sci. 2020;177:305–15.

CAS  PubMed  PubMed Central  Google Scholar 

Jamsai D, O’Bryan MK. Mouse models in male fertility research. Asian J Androl. 2011;13:139–51.

PubMed  Google Scholar 

Dunleavy JEM, O’Bryan MK, Stanton PG, O’Donnell L. The cytoskeleton in spermatogenesis. Reproduction. 2019;157:R53–72.

CAS  PubMed  Google Scholar 

Tang EI, Mruk DD, Cheng CY. MAP/microtubule affinity-regulating kinases, microtubule dynamics, and spermatogenesis. J Endocrinol. 2013;217:R13–23.

CAS  PubMed  PubMed Central  Google Scholar 

O’Donnell L, O’Bryan MK. Microtubules and spermatogenesis. Semin Cell Dev Biol. 2014;30:45–54.

CAS  PubMed  Google Scholar 

Wang L, Yan M, Wu S, Wu X, Bu T, Wong CKC, Ge R, Sun F, Cheng CY. Actin binding proteins, actin cytoskeleton and spermatogenesis - Lesson from toxicant models. Reprod Toxicol. 2020;96:76–89.

CAS  PubMed  Google Scholar 

Wang L, Yan M, Wong CKC, Ge R, Wu X, Sun F, Cheng CY. Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Histol Histopathol. 2021;36:249–65.

CAS  PubMed  Google Scholar 

Vogl A, Pfeiffer D, Mulholland D, Kimel G, Guttman J. Unique and multifunctional adhesion junctions in the testis: ectoplasmic specializations. Arch Histol Cytol. 2000;63:1–15.

CAS  PubMed  Google Scholar 

Vogl AW, Vaid KS, Guttman JA. The Sertoli cell cytoskeleton. Adv Exp Med Biol. 2008;636:186–211.

CAS  PubMed  Google Scholar 

Wang L, Yan M, Li H, Wu S, Ge R, Wong CKC, Silvestrini B, Sun F, Cheng CY. The non-hormonal male contraceptive adjudin exerts its effects via MAPs and signaling proteins mTORC1/rpS6 and FAK-Y407. Endocrinology. 2021;162(bqaa196):1. https://doi.org/10.1210/endocr/bqaa1196 PMID:33094326.

Article  Google Scholar 

Wen Q, Tang EI, Lui WY, Lee WM, Wong CKC, Silvestrini B, Cheng CY. Dynein 1 supports spermatid transport and spermiation during spermatogenesis in the rat testis. Am J Physiol Endocrinol Metab. 2018;315:E924–48.

CAS  PubMed  PubMed Central  Google Scholar 

Wen Q, Tang EI, Xiao X, Gao Y, Chu DS, Mruk DD, Silvestrini B, Cheng CY. Transport of germ cells across the seminiferous epithelium during spermatogenesis-the involvement of both actin- and microtubule-based cytoskeletons. Tissue Barriers. 2016;4:e1265042.

PubMed  PubMed Central  Google Scholar 

Tang EI, Mok KW, Lee WM, Cheng CY. EB1 regulates tubulin and actin cytoskeletal networks at the Sertoli cell blood-testis barrier in male rats - an in vitro study. Endocrinology. 2015;156:680–93.

PubMed  Google Scholar 

Mao BP, Li L, Ge RS, Li C, Wong CKC, Silvestrini B, Lian Q, Cheng CY. CAMSAP2 is a microtubule minus-end targeting protein that regulates BTB dynamics through cytoskeletal organization. Endocrinology. 2019;160:1448–67.

CAS  PubMed  PubMed Central  Google Scholar 

Adams A, Vogl W. Knockdown of IP3R1 disrupts tubulobulbar complex-ectoplasmic reticulum contact sites and the morphology of apical processes encapsulating late spermatids†. Biol Reprod. 2020;103:669–80.

PubMed  Google Scholar 

Vogl AW, Guttman JA. An Introduction to Actin and Actin-Rich Structures. Anat Rec (Hoboken). 2018;301:1986–90.

CAS  Google Scholar 

Vogl AW, Du M, Wang XY, Young JS. Novel clathrin/actin-based endocytic machinery associated with junction turnover in the seminiferous epithelium. Semin Cell Dev Biol. 2014;30:55–64.

CAS  PubMed  Google Scholar 

Vogl AW. Spatially dynamic intercellular adhesion junction is coupled to a microtubule-based motility system: evidence from an in vitro binding assay. Cell Motil Cytoskeleton. 1996;34:1–12.

CAS  PubMed  Google Scholar 

Redenbach DM, Vogl AW. Microtubule polarity in Sertoli cells: a model for microtubule-based spermatid transport. Eur J Cell Biol. 1991;54:277–90.

CAS  PubMed  Google Scholar 

Donoso P, Tournaye H, Devroey P. Which is the best sperm retrieval technique for non-obstructive azoospermia? A systematic review. Hum Reprod Update. 2007;13:539–49.

CAS  PubMed  Google Scholar 

Marchetti C, Hamdane M, Mitchell V, Mayo K, Devisme L, Rigot JM, Beauvillain JC, Hermand E, Defossez A. Immunolocalization of inhibin and activin alpha and betaB subunits and expression of corresponding messenger RNAs in the human adult testis. Biol Reprod. 2003;68:230–5.

CAS  PubMed  Google Scholar 

Yakirevich E, Sabo E, Dirnfeld M, Sova Y, Spagnoli GC, Resnick MB. Morphometrical quantification of spermatogonial germ cells with the 57B anti-MAGE-A4 antibody in the evaluation of testicular biopsies for azoospermia. Appl Immunohistochem Mol Morphol. 2003;11:37–44.

CAS  PubMed  Google Scholar 

Tang EI, Lee WM, Cheng CY. Coordination of actin- and microtubule-based cytoskeletons supports transport of spermatids and residual bodies/phagosomes during spermatogenesis in the rat testis. Endocrinology. 2016;157:1644–59.

留言 (0)

沒有登入
gif