A framework for clinical utilization of robotic exoskeletons in rehabilitation

Harrison MA. Evidence-based practice - practice-based evidence. Physiother Theory Pract. 1996;12(3):129–30.

Article  Google Scholar 

Pinto D, Garnier M, Barbas J, Chang SH, Charlifue S, Field-Fote E, et al. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems. J Neuroeng Rehabil. 2020;17(1):4.

Article  PubMed  PubMed Central  Google Scholar 

Ehrlich-Jones L, Crown DS, Kinnett-Hopkins D, Field-Fote E, Furbish C, Mummidisetty CK, et al. Clinician Perceptions of Robotic Exoskeletons for Locomotor Training After Spinal Cord Injury: A Qualitative Approach. Arch Phys Med Rehabil. 2021;102(2):203–15.

Article  PubMed  Google Scholar 

Rehabilitation Robots Market - Growth. Trends, COVID-19 Impact, and Forecasts (2021–2026). 2021.

TPLC - Total Product Life Cycle Powered Exoskeleton Silver Spring. MD: U.S. Food and Drug Administration; [updated 9/30/2022].  Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfTPLC/tplc.cfm?id=3993&min_report_year=2017

510(k) Premarket Notification - Keeogo Dermoskeleton System US Food and Drug Administration; 2020 [updated 9/30/2022].  Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K201539

Wall A, Borg J, Vreede K, Palmcrantz S. A randomized controlled study incorporating an electromechanical gait machine, the Hybrid Assistive Limb, in gait training of patients with severe limitations in walking in the subacute phase after stroke. PLoS ONE. 2020;15(2):e0229707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watanabe H, Goto R, Tanaka N, Matsumura A, Yanagi H. Effects of gait training using the Hybrid Assistive Limb® in recovery-phase stroke patients: A 2-month follow-up, randomized, controlled study. NeuroRehabilitation. 2017;40(3):363–7.

Article  PubMed  Google Scholar 

Molteni F, Guanziroli E, Goffredo M, Calabrò RS, Pournajaf S, Gaffuri M, et al. Gait Recovery with an Overground Powered Exoskeleton: A Randomized Controlled Trial on Subacute Stroke Subjects. Brain Sci. 2021;11(1):104.

Article  PubMed  PubMed Central  Google Scholar 

Calabro RS, Naro A, Russo M, Bramanti P, Carioti L, Balletta T, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial. J Neuroeng Rehabil. 2018;15(1):35.

Article  PubMed  PubMed Central  Google Scholar 

Jayaraman A, O’Brien MK, Madhavan S, Mummidisetty CK, Roth HR, Hohl K, et al. Stride management assist exoskeleton vs functional gait training in stroke: A randomized trial. Neurology. 2019;92(3):e263-e73.

Article  Google Scholar 

Bach Baunsgaard C, Vig Nissen U, Katrin Brust A, Frotzler A, Ribeill C, Kalke YB, et al. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord. 2018;56(2):106–16.

Article  PubMed  Google Scholar 

Chang SH, Afzal T, Berliner J, Francisco GE. Exoskeleton-assisted gait training to improve gait in individuals with spinal cord injury: a pilot randomized study. Pilot and Feasibility Studies. 2018;4:62.

Article  PubMed  PubMed Central  Google Scholar 

Buesing C, Fisch G, O’Donnell M, Shahidi I, Thomas L, Mummidisetty CK, et al. Effects of a wearable exoskeleton stride management assist system (SMA(R)) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial. J Neuroeng Rehabil. 2015;12:69.

Article  PubMed  PubMed Central  Google Scholar 

Rojek A, Mika A, Oleksy Ł, Stolarczyk A, Kielnar R. Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial. Front Neurol. 2019;10:1344.

Article  PubMed  Google Scholar 

Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Research: JSLHR. 2008;51(1):225-39.

Article  Google Scholar 

Hornby TG, Reisman DS, Ward IG, Scheets PL, Miller A, Haddad D, et al. Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. J Neurologic Phys Therapy. 2020;44(1):49–100.

Article  Google Scholar 

Hornby TG, Henderson CE, Plawecki A, Lucas E, Lotter J, Holthus M, et al. Contributions of Stepping Intensity and Variability to Mobility in Individuals Poststroke. Stroke. 2019;50(9):2492–9.

Article  PubMed  PubMed Central  Google Scholar 

Tefertiller C, Hays K, Jones J, Jayaraman A, Hartigan C, Bushnik T, et al. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury. Top Spinal Cord Injury Rehabilitation. 2018;24(1):78–85.

Article  Google Scholar 

Awad LN, Esquenazi A, Francisco GE, Nolan KJ, Jayaraman A. The ReWalk ReStore™ soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation. J NeuroEng Rehabil. 2020;17(1):80.

Article  PubMed  PubMed Central  Google Scholar 

Barbeau H, Visintin M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil. 2003;84(10):1458–65.

Article  PubMed  Google Scholar 

Field-Fote EC, Roach KE. Influence of a locomotor training approach on walking speed and distance in people with chronic spinal cord injury: a randomized clinical trial. Phys Ther. 2011;91(1):48–60.

Article  PubMed  PubMed Central  Google Scholar 

Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.

Article  PubMed  Google Scholar 

Holleran CL, Straube DD, Kinnaird CR, Leddy AL, Hornby TG. Feasibility and potential efficacy of high-intensity stepping training in variable contexts in subacute and chronic stroke. Neurorehabil Neural Repair. 2014;28(7):643–51.

Article  PubMed  PubMed Central  Google Scholar 

Wernig A, Müller S, Nanassy A, Cagol E. Laufband therapy based on ‘rules of spinal locomotion’ is effective in spinal cord injured persons. Eur J Neurosci. 1995;7(4):823–9.

Article  CAS  PubMed  Google Scholar 

Behrman AL, Harkema SJ. Locomotor training after human spinal cord injury: a series of case studies. Phys Ther. 2000;80(7):688–700.

Article  CAS  PubMed  Google Scholar 

Darragh AR, Huddleston W, King P. Work-related musculoskeletal injuries and disorders among occupational and physical therapists. Am J Occup Ther. 2009;63(3):351–62.

Article  PubMed  Google Scholar 

Winstein CJ. Knowledge of Results and Motor Learning—Implications for Physical Therapy. Phys Ther. 1991;71(2):140–9.

Article  CAS  PubMed  Google Scholar 

McIntosh K, Charbonneau R, Bensaada Y, Bhatiya U, Ho C. The Safety and Feasibility of Exoskeletal-Assisted Walking in Acute Rehabilitation After Spinal Cord Injury. Arch Phys Med Rehabil. 2020;101(1):113–20.

Article  PubMed  Google Scholar 

Tsai CY, Delgado AD, Weinrauch WJ, Manente N, Levy I, Escalon MX, et al. Exoskeletal-Assisted Walking During Acute Inpatient Rehabilitation Leads to Motor and Functional Improvement in Persons With Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil. 2020;101(4):607–12.

Article  PubMed  Google Scholar 

Holleran CL, Rodriguez KS, Echauz A, Leech KA, Hornby TG. Potential contributions of training intensity on locomotor performance in individuals with chronic stroke. J Neurologic Phys Therapy. 2015;39(2):95–102.

Article  Google Scholar 

Moore JL, Potter K, Blankshain K, Kaplan SL, OʼDwyer LC, Sullivan JE. A Core Set of Outcome Measures for Adults With Neurologic Conditions Undergoing Rehabilitation: A CLINICAL PRACTICE GUIDELINE. J Neurologic Phys Therapy: JNPT. 2018;42(3):174–220.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif