The FMO2 analysis of the ligand-receptor binding energy: the Biscarbene-Gold(I)/DNA G-Quadruplex case study

Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694–2718. https://doi.org/10.3762/bjoc.12.267

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818. https://doi.org/10.1126/science.1096361

Article  PubMed  CAS  Google Scholar 

Vanommeslaeghe K, Guvench O, MacKerell DA Jr (2014) Molecular mechanics. Curr Pharm Des 20:3281–3292

Article  PubMed  PubMed Central  CAS  Google Scholar 

Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71. https://doi.org/10.1186/1741-7007-9-71

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abel R, Wang L, Harder ED, Berne BJ, Friesner RA (2017) Advancing drug discovery through enhanced free energy calculations. Acc Chem Res 50:1625–1632. https://doi.org/10.1021/acs.accounts.7b00083

Article  PubMed  CAS  Google Scholar 

Meng X, Zhang H, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157. https://doi.org/10.2174/157340911795677602

Article  PubMed  PubMed Central  CAS  Google Scholar 

Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cole DJ, Horton JT, Nelson L, Kurdekar V (2019) The future of force fields in computer-aided drug design. Future Med Chem 11:2359–2363. https://doi.org/10.4155/fmc-2019-0196

Article  PubMed  CAS  Google Scholar 

Fernádez I, Cossío FP (2014) Applied computational chemistry. Chem Soc Rev 43:4906–4908. https://doi.org/10.1039/C4CS90040E

Article  Google Scholar 

Krylov A, Windus TL, Barnes T, Marin-Rimoldi E, Nash JA, Pritchard B, Smith DGA, Altarawy D, Saxe P, Clementi C, Crawford TD, Harrison RJ, Jha S, Pande VS, Head-Gordon T (2018) Perspective: computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. J Chem Phys 149:180901. https://doi.org/10.1063/1.5052551

Article  PubMed  CAS  Google Scholar 

Friesner RA (2005) Ab initio quantum chemistry: methodology and applications. PNAS 102:6648–6653. https://doi.org/10.1073/pnas.0408036102

Article  PubMed  PubMed Central  CAS  Google Scholar 

Grimme S, Schreiner PR (2018) Computational chemistry: the fate of current methods and future challenges. Angew Chem Int Ed 57:4170–4176. https://doi.org/10.1002/anie.201709943

Article  CAS  Google Scholar 

Friesner RA (2004) Combined quantum and molecular mechanics (QM/MM). Drug Discov Today Technol 1:253–260. https://doi.org/10.1016/j.ddtec.2004.11.008

Article  PubMed  CAS  Google Scholar 

Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A 111:6904–6914. https://doi.org/10.1021/jp0716740

Article  PubMed  CAS  Google Scholar 

Steinmann C, Fedorov DG, Jensen JH (2010) Effective fragment molecular orbital method: a merger of the effective fragment potential and fragment molecular orbital methods. J Phys Chem A 114(33):8705–8712. https://doi.org/10.1021/jp101498m

Article  PubMed  CAS  Google Scholar 

Fedorov DG, Kitaura K (2006) The three-body fragment molecular orbital method for accurate calculations of large systems. Chem Phys Lett 433:182–187. https://doi.org/10.1016/j.cplett.2006.10.052

Article  CAS  Google Scholar 

Nakano T, Mochizuki Y, Yamashita K, Watanabe C, Fukuzawa K, Segawa K, Okiyama Y, Tsukamoto T, Tanaka S (2012) Development of the four-body corrected fragment molecular orbital (FMO4) method. Chem Phys Lett 523:128–133. https://doi.org/10.1016/j.cplett.2011.12.004

Article  CAS  Google Scholar 

Fedorov DG, Kitaura K (2007) Pair interaction energy decomposition analysis. J Comput Chem 28:222–237. https://doi.org/10.1002/jcc.20496

Article  PubMed  CAS  Google Scholar 

Fedorov DG, Kitaura K (2012) Energy decomposition analysis in solution based on the fragment molecular orbital method. J Phys Chem A 116:704–719. https://doi.org/10.1021/jp209579w

Article  PubMed  CAS  Google Scholar 

Ma B, Yamaguchi K, Fukuoka M, Kuwata K (2016) Logical design of anti-prion agents using NAGARA. Biochem Biophys Res Commun 469:930–935. https://doi.org/10.1016/j.bbrc.2015.12.106

Article  PubMed  CAS  Google Scholar 

Paciotti R, Agamennone M, Coletti C, Storchi L (2020) Characterization of PD-L1 binding sites by a combined FMO/GRID-DRY approach. J Comput Aided Mol Des 34:897–914. https://doi.org/10.1007/s10822-020-00306-0

Article  PubMed  CAS  Google Scholar 

Watanabe C, Watanabe H, Fukuzawa K, Parker LJ, Okiyama Y, Yuki H, Yokoyama S, Nakano H, Tanaka S, Honma T (2017) Theoretical analysis of activity cliffs among benzofuranone-class Pim1 inhibitors using the fragment molecular orbital method with molecular mechanics poisson−Boltzmann surface area (FMO+MMPBSA) approach. J Chem Inf Model 57:2996–3010. https://doi.org/10.1021/acs.jcim.7b00110

Article  PubMed  CAS  Google Scholar 

Heifetz A, Chudyk EI, Gleave L, Aldeghi M, Cherezov V, Fedorov DG, Biggin PC, Bodkin MJ (2016) The fragment molecular orbital method reveals new insight into the chemical nature of GPCR−ligand interactions. J Chem Inf Model 56:159–172. https://doi.org/10.1021/acs.jcim.5b00644

Article  PubMed  CAS  Google Scholar 

Fedorov DG, Kitaura K (2016) Subsystem analysis for the fragment molecular orbital method and its application to protein−ligand binding in solution. J Phys Chem A 120:2218–2231. https://doi.org/10.1021/acs.jpca.6b00163

Article  PubMed  CAS  Google Scholar 

Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43(18):8627–8637. https://doi.org/10.1093/nar/gkv862

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lightfoot HL, Hagen T, Tatum NJ, Hall J (2019) The diverse structural landscape of quadruplexes. FEBS Lett 593:2083–2102. https://doi.org/10.1002/1873-3468.13547

Article  PubMed  CAS  Google Scholar 

de Luzuriaga IO, Lopez X, Gil A (2021) Learning to model G-Quadruplexes: current methods and perspectives. Annu Rev Biophys 50:209–243. https://doi.org/10.1146/annurev-biophys-060320-091827

Article  CAS  Google Scholar 

Terenzi A, Bonsignore R, Spinello A, Gentile C, Martorana A, Ducani C, Högberg B, Almerico AM, Lauria A, Barone G (2014) Selective G-quadruplex stabilizers: Schiff-base metal complexes with anticancer activity. RSC Adv 4:33245–33256. https://doi.org/10.1039/C4RA05355A

Article  CAS  Google Scholar 

Karim NHA, Mendoza O, Shivalingam A, Thompson AJ, Ghosh S, Kuimova MK, Vilar R (2014) Salphen metal complexes as tunable G-quadruplex binders and optical probes. RSC Adv 4:3355–3363. https://doi.org/10.1039/C3RA44793F

Article  Google Scholar 

Keating LR, Szalai VA (2004) Parallel-stranded guanine quadruplex interactions with a copper cationic porphyrin. Biochemistry 43:15891–15900. https://doi.org/10.1021/bi0483209

Article  PubMed  CAS  Google Scholar 

Kieltyka R, Englebienne P, Fakhoury J, Autexier C, Moitessier N, Sleiman HF (2008) A platinum supramolecular square as an effective G-Quadruplex binder and telomerase inhibitor. J Am Chem Soc 130:10040–10041. https://doi.org/10.1021/ja8014023

Article  PubMed  CAS  Google Scholar 

Wu P, Ma DL, Leung CH, Yan SC, Zhu N, Abagyan R, Che C (2009) Stabilization of G-quadruplex DNA with platinum(II) Schiff base complexes: luminescent probe and down-regulation of C-Myc oncogene expression. Chem Eur J 15:13008–13021. https://doi.org/10.1002/chem.200901943

Article  PubMed  CAS  Google Scholar 

Terenzi A, Lötsch D, van Schoonhoven S, Roller A, Kowol CR, Berger W, Keppler BK, Barone G (2016) Another step toward DNA selective targeting: NiII and CuII complexes of a Schiff base ligand able to bind gene promoter G-quadruplexes. Dalton Trans 45:7758–7767. https://doi.org/10.1039/C6DT00648E

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xia Y, Chen Q, Qin X, Sun D, Zhang J, Liu J (2013) Studies of ruthenium(II)-2,20-bisimidazole complexes on binding to G-quadruplex DNA and inducing apoptosis in HeLa cells. New J Chem 37:3706–3715. https://doi.org/10.1039/C3NJ00542A

Article  CAS  Google Scholar 

Chen X, Wu JH, Lai YW, Zhao R, Chao H, Ji LN (2013) Targeting telomeric G-quadruplexes with the ruthenium(II) complexes [Ru(bpy)2(ptpn)]2+ and [Ru(phen)2(ptpn)]2+. Dalton Trans 42:4386–4397. https://doi.org/10.1039/C3DT32921F

Article  PubMed  CAS  Google Scholar 

Tuntiwechapikul W, Lee JT, Salazar M (2001) Design and synthesis of the G-quadruplex-specific cleaving reagent perylene-EDTA•iron(II). J Am Chem Soc 123:5606–5607. https://doi.org/10.1021/ja0156439

Article

留言 (0)

沒有登入
gif