Structures, biosynthesis, and bioactivities of prodiginine natural products

Abbas MS, Mansureh SK, Zhila K, Fatemeh E (2018) Unlike butylcycloheptylprodigiosin, isolated undecylprodigiosin from Streptomyces parvulus is not a MDR1 and BCRP substrate in multidrug-resistant cancers. DNA Cell Biol 37(6):535–542. https://doi.org/10.1089/dna.2018.416

Article  Google Scholar 

Alzahrani NH, El-Bondkly AAM, El-Gendy MMAA, El-Bondkly AM (2021) Enhancement of undecylprodigiosin production from marine endophytic recombinant strain Streptomyces sp. ALAA-R20 through low-cost induction strategy. J Appl Genet 62(1):165–182. https://doi.org/10.1007/s13353-020-00597-x

Article  CAS  PubMed  Google Scholar 

Amorim LF, Mouro C, Riool M, Gouveia IC (2022) Antimicrobial food packaging based on prodigiosin-incorporated double-layered bacterial cellulose and chitosan composites. Polymers 14:315. https://doi.org/10.3390/polym14020315

Arellano ML, Borthakur G, Berger M, Luer J, Raza A (2014) A phase II, multicenter, open-label study of obatoclax mesylate in patients with previously untreated myelodysplastic syndromes with anemia or thrombocytopenia. Clin Lymphoma Myeloma Leuk 14(6):534–539. https://doi.org/10.1016/j.clml.2014.04.007

Article  PubMed  Google Scholar 

Arivizhivendhan KV, Mahesh M, Boopathy R, Swarnalatha S, Regina MR, Sekaran G (2018) Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. J Food Sci Technol 55(7):2661–2670. https://doi.org/10.1007/s13197-018-3188-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berning L, Schlütermann D, Friedrich A, Berleth N, Sun YD, Wu WX, Mendiburo MJ, Deitersen J, Brass HUC, Skowron MA, Hoffmann MJ, Niegisch G, Pietruszka J, Stork B (2021) Prodigiosin sensitizes sensitive and resistant urothelial carcinoma cells to cisplatin treatment. Molecules 26(5):1294. https://doi.org/10.3390/molecules26051294

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bikash B, Vilja S, Mitchell L, Keith Y, Mikael I, Mikko MK, Jarmo N (2021) Differential regulation of undecylprodigiosin biosynthesis in the yeast-scavenging Streptomyces strain MBK6. FEMS Microbiol Lett 368(8). https://doi.org/10.1093/femsle/fnab044

Branco PC, Pontes CA, Rezende-Teixeira P, Amengual-Rigo P, Alves-Fernandes DK, Maria-Engler SS, da Silva AB, Pessoa ODL, Jimenez PC, Mollasalehi N, Chapman E, Guallar V, Machado-Neto JA, Costa-Lotufo LV (2020) Survivin modulation in the antimelanoma activity of prodiginines. Eur J Pharmacol 888:173465. https://doi.org/10.1016/j.ejphar.2020.173465

Article  CAS  PubMed  Google Scholar 

Brown JR, Tesar B, Yu L, Werner L, Takebe N, Mikler E, Reynolds HM, Thompson C, Fisher DC, Neuberg D, Freedman AS (2015) Obatoclax in combination with fludarabine and rituximab is well-tolerated and shows promising clinical activity in relapsed chronic lymphocytic leukemia. Leuk Lymphoma 56(12):3336–3342. https://doi.org/10.3109/10428194.2015.1048441

Article  CAS  PubMed  Google Scholar 

Cerdeno AM, Bibb MJ, Challis GL (2001) Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes. Chem Biol 8(8):817–829. https://doi.org/10.1016/s1074-5521(01)00054-0

Article  CAS  PubMed  Google Scholar 

Chen XY, Yang PZ, Jiang ST, Zhi Z, Li CL, Min CX, Xing ZX, Feng ZD, Qng LG (2017) Experimental study of acute oral toxicity and genetic toxicity of natural red pigment prodigiosin. Food Science 38(13):224–228. https://doi.org/10.7506/spkx1002-6630-201713037

Article  Google Scholar 

Cheng SY, Chen NF, Kuo HM, Yang SN, Sung CS, Sung PJ, Wen ZH, Chen WF (2018) Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells. Apoptosis 23(5–6):314–328. https://doi.org/10.1007/s10495-018-1456-9

Article  CAS  PubMed  Google Scholar 

Chiu WJ, Lin SR, Chen YH, Tsai MJ, Leong MK, Weng CF (2018) Prodigiosin-emerged PI3K/beclin-1-independent pathway elicits autophagic cell death in doxorubicin-sensitive and -resistant lung cancer. J Clin Med 7(10):321. https://doi.org/10.3390/jcm7100321

Article  CAS  PubMed Central  Google Scholar 

Danevčič T, Borić VM, Tabor M, Zorec M, Stopar D (2016) Prodigiosin induces autolysins in actively grown Bacillus subtilis cells. Front Microbiol 7:27. https://doi.org/10.3389/fmicb.2016.00027

Article  PubMed  PubMed Central  Google Scholar 

Davis JT (2010) Anion binding and transport by prodigiosin and its analogs. Anion recognition in supramolecular chemistry, pp 145–176. https://doi.org/10.1007/7081_2010_29

Book  Google Scholar 

de Rond T, Stow P, Eigl I, Johnson RE, Chan LJG, Goyal G, Baidoo EEK, Hillson NJ, Petzold CJ, Sarpong R, Keasling JD (2017) Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme. Nat Chem Biol 13(11):1155–1157. https://doi.org/10.1038/nchembio.2471

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doroghazi JR, Buckley DH (2014) Intraspecies comparison of Streptomyces pratensis genomes reveals high levels of recombination and gene conservation between strains of disparate geographic origin. BMC Genomics 15(1):1–14. https://doi.org/10.1186/1471-2164-15-970

Article  Google Scholar 

dos Santos RA, Rodríguez DM, da Silva LAR, de Almeida SM, de Campos-Takaki GM, de Lima MAB (2021) Enhanced production of prodigiosin by Serratia marcescens UCP 1549 using agrosubstrates in solid-state fermentation. Arch Microbiol 203(7):4091–4100. https://doi.org/10.1007/s00203-021-02399-z

Article  CAS  PubMed  Google Scholar 

Eckelmann D, Spiteller M, Kusari S (2018) Spatial-temporal profiling of prodiginines and serratamolides produced by endophytic Serratia marcescens harbored in Maytenus serrata. Sci Rep 8(1):5283. https://doi.org/10.1038/s41598-018-23538-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elmallah MIY, Cogo S, Constantinescu AA, Elifio-Esposito S, Abdelfattah MS, Micheau O (2020) Marine actinomycetes-derived secondary metabolites overcome TRAIL-resistance via the intrinsic pathway through downregulation of Survivin and XIAP. Cells 9(8) https://doi.org/10.3390/cells9081760

Estelle M, A SD, Imam UM, W RA, L JD, Vanessa M, D GC, S MK, A MS, I MG, Alison T (2014) Synthesis and antimalarial activity of prodigiosenes. Org Biomol Chem 12(24):4132-42. https://doi.org/10.1039/c3ob42548g

Feher D, Barlow RS, Lorenzo PS, Hemscheidt TK (2008) A 2-substituted prodiginine, 2-(p-hydroxybenzyl)prodigiosin, from Pseudoalteromonas rubra. J Nat Prod 71(11):1970–1972. https://doi.org/10.1021/np800493p

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerber NN (1969) Prodigiosin-like pigments from Actinomadura (Nocardia) pelletieri and Actinomadura madurae. J Appl Microbiol 18(1):1–3. https://doi.org/10.1128/am.18.1.1-3.1969

Article  CAS  Google Scholar 

Gerber NN (1971) Prodigiosin-like pigments from Actinomadura (Nocardia) pelletieri. J Antibiot 24(9):636–640. https://doi.org/10.7164/antibiotics.24.636

Article  CAS  Google Scholar 

Gerber NN (1975) A new prodiginne (prodigiosin-like) pigment from Streptomyces. Antimalarial activity of several prodiginnes. J Antibiot 28(3):194–9. https://doi.org/10.7164/antibiotics.28.194

Article  CAS  Google Scholar 

Gerber NN (1970) A novel, cyclic, tripyrrole pigment from Actinomadura (nocardia) madurae. Tetrahedron Lett (11):809–12. https://doi.org/10.1016/s0040-4039(01)97837-2

Gohil N, Bhattacharjee G, Singh V (2020) Synergistic bactericidal profiling of prodigiosin extracted from Serratia marcescens in combination with antibiotics against pathogenic bacteria. Microb Pathog 149:104508. https://doi.org/10.1016/j.micpath.2020.104508

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gristwood T, McNeil MB, Clulow JS, Salmond GP, Fineran PC (2011) PigS and PigP regulate prodigiosin biosynthesis in Serratia via differential control of divergent operons, which include predicted transporters of sulfur-containing molecules. J Bacteriol 193(5):1076–1085. https://doi.org/10.1128/JB.00352-10

Article  CAS  PubMed  Google Scholar 

Han LN, Zhou YH, Huang XQ, Xiao MS, Zhou L, Zhou JH, Wang AH, Shen J (2014) A multi-spectroscopic approach to investigate the interaction of prodigiosin with ct-DNA. Spectrochim Acta A Mol Biomol 123:497–502. https://doi.org/10.1016/j.saa.2013.11.088

Article  CAS  Google Scholar 

Harris AKP, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GPC (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology (reading, Engl) 150(Pt 11):3547–3560. https://doi.org/10.1099/mic.0.27222-0

Article  CAS  Google Scholar 

He SF, Li PS, Wang JX, Zhang YZ, Lu HM, Shi LF, Huang T, Zhang WY, Ding LJ, He S, Liu LW (2022) Discovery of new secondary metabolites from marine bacteria Hahella based on an omics strategy. Mar Drugs 20(4):269. https://doi.org/10.3390/md20040269

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heu K, Romoli O, Schönbeck JC, Ajenoe R, Epelboin Y, Kircher V, Houël E, Estevez Y, Gendrin M (2021) The effect of secondary metabolites produced by Serratia marcescens on Aedes aegypti and its microbiota. Front Microbiol 12:645701. https://doi.org/10.3389/fmicb.2021.645701

Article  PubMed  PubMed Central  Google Scholar 

Huang ZB, Dong L, Lai QL, Liu JQ (2020) Spartinivicinus ruber gen. nov., sp. nov., a novel marine gammaproteobacterium producing heptylprodigiosin and cycloheptylprodigiosin as major red pigments. Front microbial 2056. https://doi.org/10.3389/fmicb.2020.02056

Jessica J, David W, D SC, K LE (2014) Use of quantitative real-time PCR for direct detection of serratia marcescens in marine and other aquatic environments. Appl Environ Microbiol 80(5):1679-1683. https://doi.org/10.1128/AEM.02755-13

Kancharla P, Li Y, Yeluguri M, Dodean RA, Reynolds KA, Kelly JX (2021) Total synthesis and antimalarial activity of 2-(p-Hydroxybenzyl)-prodigiosins, isoheptylprodigiosin, and geometric isomers of tambjamine MYP1 isolated from marine bacteria. J Med Chem 64(12):8739–8754. https://doi.org/10.1021/acs.jmedchem.1c00748

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kancharla P, Martin S, Xu KJ, Shweta, M SS, Mamoun A, W HS, L CG, A RK (2011) Antimalarial activity of natural and synthetic prodiginines. J Med Chem 54(15):5296-306. https://doi.org/10.1021/jm200543y

Kawasaki T, Sakurai F, Nagatsuka S-y, Hayakawa Y (2009) Prodigiosin biosynthesis gene cluster in the roseophilin producer Streptomyces griseoviridis. J Antibiot 62(5):271–276. https://doi.org/10.1038/ja.2009.27

Article  CAS  Google Scholar 

Kettenmann SD, White M, Colard‐Thomas J, Kraft M, Feßler AT, Danz K, Wieland G, Wagner S, Schwarz S, Wiehe A (2022) Investigating alkylated prodigiosenes and their Cu (II)‐dependent biological activity: interactions with DNA, antimicrobial and photoinduced anticancer activity. Chemmedchem 17(3). https://doi.org/10.1002/cmdc.202100702

Kim HS, Hayashi M, Shibata Y, Wataya Y, Mitamura T, Horii T, Kawauchi K, Hirata H, Tsuboi S, Moriyama Y (1999) Cycloprodigiosin hydrochloride obtained from Pseudoalteromonas denitrificans is a potent antimalarial agent. Biol Pharm Bull 22(5):532–534. https://doi.org/10.1248/bpb.22.532

Article  CAS  PubMed  Google Scholar 

Kim D, Park YK, Lee JS, Kim JF, Jeong H, Kim BS, Lee CH (2006) Analysis of a prodigiosin biosynthetic gene cluster from the marine bacterium Hahella chejuensis KCTC 2396. J Microbiol Biotechnol 16(12):1912–1918

CAS  Google Scholar 

Kim D, Lee JS, Park YK, Kim JF, Jeong H, Oh TK, Kim BS, Lee CH (2007) Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J Appl Microbiol 102(4):937–944. https://doi.org/10.1111/j.1365-2672.2006.03172.x

Article  CAS  PubMed 

留言 (0)

沒有登入
gif