Taylor Dispersion Analysis to support lipid-nanoparticle formulations for mRNA vaccines

Rappuoli R, Pizza M, Del Giudice G, De Gregorio E. Vaccines, new opportunities for a new society. Proc Natl Acad Sci. 2014;111:12288–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21:83–100.

Article  CAS  PubMed  Google Scholar 

Morens DM, Fauci AS. Emerging pandemic diseases: how we got to COVID-19. Cell. 2020;182:1077–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater. 2017;2:17056.

Article  CAS  Google Scholar 

Nanomedicine and the COVID-19 vaccines. Nat Nanotechnol. 2020;15, 963–963.

Gebre MS, Brito LA, Tostanoski LH, Edwards DK, Carfi A, Barouch DH. Novel approaches for vaccine development. Cell. 2021;184:1589–603.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–8.

Article  CAS  PubMed  Google Scholar 

Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guan S, Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017;24:133–43.

Article  CAS  PubMed  Google Scholar 

Zhang X, Goel V, Robbie GJ. Pharmacokinetics of patisiran, the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis. J Clin Pharmacol. 2020;60:573–85.

Article  CAS  PubMed  Google Scholar 

Urits I, Swanson D, Swett MC, Patel A, Berardino K, Amgalan A, et al. A review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol Ther. 2020;9:301–15.

Article  PubMed  PubMed Central  Google Scholar 

Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14:1084–7.

Article  CAS  PubMed  Google Scholar 

Kim YC, Dema B, Reyes-Sandoval A. COVID-19 vaccines: breaking record times to first-in-human trials. Npj Vaccines. 2020;5:34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedrichs S, Bowman DM. COVID-19 may become nanomedicine’s finest hour yet. Nat Nanotechnol. 2021;16:362–4.

Article  CAS  PubMed  Google Scholar 

Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm. 2021;601:120586.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crommelin DJA, Anchordoquy TJ, Volkin DB, Jiskoot W, Mastrobattista E. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci. 2021;110:997–1001.

Article  CAS  PubMed  Google Scholar 

Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, et al. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013;31:638–46.

Article  CAS  PubMed  Google Scholar 

Sabnis S, Kumarasinghe ES, Salerno T, Mihai C, Ketova T, Senn JJ, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26:1509–19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapin-Bardales J, Gee J, Myers T. Reactogenicity following receipt of mRNA-based COVID-19 vaccines. JAMA. 2021;325:2201–2.

Article  CAS  PubMed  Google Scholar 

Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020;15:313–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dammes N, Goldsmith M, Ramishetti S, Dearling JLJ, Veiga N, Packard AB, et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat Nanotechnol. 2021;16:1030–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilhelm S, Tavares A, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014.

Article  CAS  Google Scholar 

Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3:145–50.

Article  CAS  PubMed  Google Scholar 

Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422:37–44.

Article  CAS  PubMed  Google Scholar 

Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377:159–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9:615–27.

Article  CAS  PubMed  Google Scholar 

Andar AU, Hood RR, Vreeland WN, DeVoe DL, Swaan PW. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm Res. 2014;31:401–13.

Article  CAS  PubMed  Google Scholar 

Evers MJW, Kulkarni JA, Van der Meel R, Cullis PR, Vader P, Schiffelers RM. State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods. 2018;2:1700375.

Article  Google Scholar 

Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomed. 2016;11:673–92.

Article  CAS  Google Scholar 

Chauhan VP, Jain RK. Strategies for advancing cancer nanomedicine. Nat Mater. 2013;12:958–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le-Vinh B, Steinbring C, Wibel R, Friedl JD, Bernkop-Schnürch A. Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery. Eur J Pharm Biopharm. 2021;163:109–19.

Article  CAS  PubMed  Google Scholar 

Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14:781–803.

Article  CAS  PubMed  Google Scholar 

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24.

Article  CAS  PubMed  Google Scholar 

Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Demelenne A, Servais AC, Crommen J, Fillet M. Analytical techniques currently used in the pharmaceutical industry for the quality control of RNA-based therapeutics and ongoing developments. J Chromatogr. A. 2021;1651:462283.

Article  CAS  PubMed  Google Scholar 

Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal. 2021;192:113642.

Article  CAS  PubMed  Google Scholar 

Malburet C, Leclercq L, Cotte JF, Thiebaud J, Bazin E, Garinot M, et al. Size and charge characterization of lipid nanoparticles for mRNA vaccines. Anal Chem. 2022;94:4677–85.

Article  CAS  PubMed  Google Scholar 

Chamieh J, Leclercq L, Martin M, Slaoui S, Jensen H, Østergaard J, et al. Limits in size of taylor dispersion analysis: repre

留言 (0)

沒有登入
gif