SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies

World Health Organization. WHO COVID-19 dashboard. World Health Organization https://covid19.who.int/ (2022).

Uddin, M. et al. SARS-CoV-2/COVID-19: viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses 12, 526 (2020). This article reviews the pathogenicity, transmission and epidemiology of SARS-CoV-2, and also discusses available interventions such as vaccines, antiviral drugs and mAbs.

Article  CAS  PubMed Central  Google Scholar 

Drożdżal, S. et al. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist. Updat. 59, 100794 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Zhou, L., Ayeh, S. K., Chidambaram, V. & Karakousis, P. C. Modes of transmission of SARS-CoV-2 and evidence for preventive behavioral interventions. BMC Infect. Dis. 21, 496 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, L., Luo, T., Du, M., Mei, H. & Hu, Y. Efficacy and safety of tocilizumab in hospitalized COVID-19 patients: a systematic review and meta-analysis. J. Infect. 84, 418–467 (2022).

Article  CAS  PubMed  Google Scholar 

Taylor, P. C. et al. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 21, 382–393 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elshabrawy, H. A., Coughlin, M. M., Baker, S. C. & Prabhakar, B. S. Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing. PLoS ONE 7, e50366 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suryadevara, N. et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell 184, 2316–2331.e15 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021). This Review discusses the impact of SARS-CoV-2 spike mutations on antigenicity, their context within the spike protein structure and their frequency in global sequence data sets.

Article  CAS  PubMed  PubMed Central  Google Scholar 

FDA. Bamlanivimab EUA. US Food and Drug Administration https://www.fda.gov/media/147629/download (2021). This Letter explains that the Emergency Use Authorization for bamlanivimab was revoked by the FDA due to known resistance mutations circulating in high frequency.

FDA. Sotrovimab EUA. US Food and Drug Administration https://www.fda.gov/media/149532/download (2022).

FDA. Casirivimab and imdevimab EUA. US Food and Drug Administration https://www.fda.gov/media/145610/download (2022).

FDA. Bamlanivimab and etesevimab. US Food and Drug Administration https://www.fda.gov/media/145801/download (2022).

Tian, D., Sun, Y., Zhou, J. & Ye, Q. The global epidemic of the SARS-CoV-2 delta variant, key spike mutations and immune escape. Front. Immunol. 12, 751778 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, D., Sun, Y., Xu, H. & Ye, Q. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J. Med. Virol. 94, 2376–2383 (2022). This Review summarizes the biological characteristics of the amino acid substitutions present in the Omicron variant, as well as its epidemic characteristics and immune and vaccine escape.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desingu, P. A. & Nagarajan, K. Omicron BA.2 lineage spreads in clusters and is concentrated in Denmark. J. Med. Virol. 94, 2360–2364 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 603, 679–686 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, J., Lai, S., Gao, G. F. & Shi, W. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature 600, 408–418 (2021).

Article  CAS  PubMed  Google Scholar 

Tegally, H. et al. Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nat. Med. 28, 1785–1780 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 608, 593–602 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tuekprakhon, A. et al. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell 185, 2422–2433.e13 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, H. et al. 501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to Bamlanivimab. mAbs 13, 1919285 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Meng, B. et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature 603, 706–714 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamasoba, D. et al. Neutralisation sensitivity of SARS-CoV-2 Omicron subvariants to therapeutic monoclonal antibodies. Lancet Infect. Dis. 22, 942–943 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muruato, A. E. et al. A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nat. Commun. 11, 4059 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brugh, M. A simple method for recording and analyzing serological data. Avian Dis. 22, 362–365 (1978).

Article  PubMed  Google Scholar 

Planas, D. et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276–280 (2021).

Article  CAS  PubMed  Google Scholar 

Hoffmann, M. et al. SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination. Cell Rep. 36, 109415 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riepler, L. et al. Comparison of four SARS-CoV-2 neutralization assays. Vaccines 9, 13 (2021). This study compares four different in vitro neutralization assay protocols, including two that use replication-competent SARS-CoV-2, one using replication-defective lentivirus and one using replication-defective vesicular stomatitis virus.

Article  CAS  Google Scholar 

Wu, M. Y. et al. WHO’s Therapeutics and COVID-19 Living Guideline on mAbs needs to be reassessed. Lancet https://doi.org/10.1016/S0140-6736(22)01938-9 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Dougan, M. et al. Bebtelovimab, alone or together with bamlanivimab and etesevimab, as a broadly neutralizing monoclonal antibody treatment for mild to moderate, ambulatory COVID-19. Preprint at medRxiv https://doi.org/10.1101/2022.03.10.22272100 (2022).

Article  Google Scholar 

Yetmar, Z. A. et al. Outcomes of bebtelovimab and sotrovimab treatment of solid organ transplant recipients with mild-to-moderate coronavirus disease 2019 during the Omicron epoch. Transpl. Infect. Dis. 24, e13901 (2022).

Article  CAS  PubMed  Google Scholar 

Benotmane, I. et al. Breakthrough COVID-19 cases despite prophylaxis with 150 mg of tixagevimab and 150 mg of cilgavimab in kidney transplant recipients. Am. J. Transplant. https://doi.org/10.1111/ajt.17121 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Kaminski, H. et al. COVID-19 morbidity decreases with tixagevimab/cilgavimab preexposure prophylaxis in kidney transplant recipients non/low vaccine responders. Kidney Int. 102, 936–938 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lusvarghi, S. et al. SARS-CoV-2 BA.1 variant is neutralized by vaccine booster-elicited serum, but evades most convalescent serum and therapeutic antibodies. Sci. Transl Med. 14, eabn8543 (2022).

Article  CAS  PubMed  Google Scholar 

Yamasoba, D. et al. Neutralization sensitivity of Omicron BA.2.75 to therapeutic monoclonal antibodies. Preprint at bioRxiv https://doi.org/10.1101/2022.07.14.500041 (2022).

Article  Google Scholar 

Sheward, D. J. et al. Evasion of neutralising antibodies by omicron sublineage BA.2.75. Lancet Infect. Dis. 22, 1421–1422 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao, Y. et al. Neutralizing antibody evasion and receptor binding features of SARS-CoV-2 Omicron BA.2.75. Preprint at bioRxiv https://doi.org/10.1101/2022.07.18.500332 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Lazarevic, I., Pravica, V., Miljanovic, D. & Cupic, M. Immune evasion of SARS‐CoV‐2 emerging variants: what have we learnt so far? Viruses 13, 1192 (2021).

Article  CAS 

留言 (0)

沒有登入
gif