How Has Molecular Biology Enhanced Our Undertaking of axSpA and Its Management

van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27:361–8. https://doi.org/10.1002/art.1780270401.

Article  PubMed  Google Scholar 

Sieper J, van der Heijde D, Landewé R, Brandt J, Burgos-Vagas R, Collantes-Estevez E, Dijkmans B, Dougados M, Khan MA, Leirisalo-Repo M, van der Linden S, Maksymowych WP, Mielants H, Olivieri I, Rudwaleit M. New criteria for inflammatory back pain in patients with chronic back pain: a real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS). Ann Rheum Dis. 2009; https://doi.org/10.1136/ard.2008.101501.

Chimenti MS, Conigliaro P, Navarini L, Martina FM, Peluso G, Birra D, Sessa P, Anzidei M, Scolieri P, Bruzzese V, Santoboni G, Cardello P, Gremese E, Afeltra A, Valesini G, Sebastiani GD, Perricone R, Scrivo R. Demographic and clinical differences between ankylosing spondylitis and non-radiographic axial spondyloarthritis: results from a multicentre retrospective study in the Lazio region of Italy. Clin Exp Rheumatol. 2020;38:88–93.

PubMed  Google Scholar 

Sharip A, Kunz J. Understanding the pathogenesis of spondyloarthritis. Biomolecules. 2020; https://doi.org/10.3390/biom10101461.

Rezaiemanesh A, Abdolmaleki M, Abdolmohammadi K, Aghaei H, Pakdel FD, Fatahi Y, Soleimanifar N, Zavvar M, Nicknam MH. Immune cells involved in the pathogenesis of ankylosing spondylitis. Biomed Pharmacother. 2018; https://doi.org/10.1016/j.biopha.2018.01.108.

Clunie G, Horwood N. Loss and gain of bone in spondyloarthritis: what drives these opposing clinical features? Ther Adv Musculoskelet Dis. 2020; https://doi.org/10.1177/1759720X20969260.

Australo-Anglo-American Spondyloarthritis Consortium (TASC), Reveille JD, Sims AM, Danoy P, Evans DM, Leo P, Pointon JJ, Jin R, Zhou X, Bradbury LA, Appleton LH, Davis JC, Diekman L, Doan T, Dowling A, Duan R, Duncan EL, Farrar C, Hadler J, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet. 2010; https://doi.org/10.1038/ng.513.

Vecellio M, Cohen CJ, Roberts AR, Wordsworth PB, Kenna TJ. RUNX3 and T-Bet in immunopathogenesis of ankylosing spondylitis-novel targets for therapy? Front Immunol. 2018; https://doi.org/10.3389/fimmu.2018.03132.

Costantino F, Breban M, Garchon H-J. Genetics and functional genomics of spondyloarthritis. Front Immunol. 2018; https://doi.org/10.3389/fimmu.2018.02933.

Brown MA, Xu H, Li Z. Genetics and the axial spondyloarthritis spectrum. Rheumatol Oxf Engl. 2020; https://doi.org/10.1093/rheumatology/keaa464. Review which demonstrated that genetic variation is a major determinant of the clinical pattern of axSpA.

Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013; https://doi.org/10.1038/nrg3502.

Chimenti MS, Perricone C, D'Antonio A, Ferraioli M, Conigliaro P, Triggianese P, Ciccacci C, Borgiani P, Perricone R. Genetics, epigenetics, and gender impact in axial-spondyloarthritis susceptibility: an update on genetic polymorphisms and their sex related associations. Front Genet. 2021; https://doi.org/10.3389/fgene.2021.671976.

Caffrey MF, James DC. Human lymphocyte antigen association in ankylosing spondylitis. Nature. 1973; https://doi.org/10.1038/242121a0.

Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today. 1990; https://doi.org/10.1016/0167-5699(90)90051-a.

Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol. 2014; https://doi.org/10.1016/j.molimm.2013.07.013.

Chimenti MS, Perricone C, Novelli L, Caso F, Costa L, Bogdanos D, Conigliaro P, Triggianese P, Ciccacci C, Borgiani P, Perricone R. Interaction between microbiome and host genetics in psoriatic arthritis. Autoimmun Rev. 2018; https://doi.org/10.1016/j.autrev.2018.01.002.

Akassou A, Bakri Y. Does HLA-B27 status influence ankylosing spondylitis phenotype? Clin Med Insights Arthritis Musculoskelet Disord. 2018; https://doi.org/10.1177/1179544117751627.

Cortes A, Pulit SL, Leo PJ, Pointon JJ, Robinson PC, Weisman MH, Ward M, Gensler LS, Zhou X, Garchon HJ, Chiocchia G, Nossent J, Lie BA, Førre Ø, Tuomilehto J, Laiho K, Bradbury LA, Elewaut D, Burgos-Vargas R, et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat Commun. 2015; https://doi.org/10.1038/ncomms8146.

Reveille JD. An update on the contribution of the MHC to AS susceptibility. Clin Rheumatol. 2014; https://doi.org/10.1007/s10067-014-2662-7.

Wellcome Trust Case Control Consortium, Australo-Anglo-American Spondylitis Consortium (TASC), Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, MI MC, Ouwehand WH, Samani NJ, Todd JA, Donnelly P, Barrett JC, Davison D, Easton D, Evans DM, Leung HT, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007; https://doi.org/10.1038/ng.2007.17.

Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D, Lepelletier Y, Greer F, Schomburg L, Fruci D, Niedermann G, van Endert PM. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol. 2005; https://doi.org/10.1038/ni1208.

Chen L, Ridley A, Hammitzsch A, Al-Mossawi MH, Bunting H, Georgiadis D, Chan A, Kollnberger S, Bowness P. Silencing or inhibition of endoplasmic reticulum aminopeptidase 1 (ERAP1) suppresses free heavy chain expression and Th17 responses in ankylosing spondylitis. Ann Rheum Dis. 2016; https://doi.org/10.1136/annrheumdis-2014-206996. Study which demonstrated that ERAP1 inhibition may suppress Th17 response in AS

Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014; https://doi.org/10.1038/nri3707.

Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, Emery P, Deodhar A, Porter B, Martin R, Andersson M, Mpofu S, Richards HB; MEASURE 1 Study Group; MEASURE 2 Study Group. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N Engl J Med. 2015; https://doi.org/10.1056/NEJMoa1505066

Baeten D, Østergaard M, Wei JC, Sieper J, Järvinen P, Tam LS, Salvarani C, Kim TH, Solinger A, Datsenko Y, Pamulapati C, Visvanathan S, Hall DB, Aslanyan S, Scholl P, Padula SJ. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann Rheum Dis. 2018; https://doi.org/10.1136/annrheumdis-2018-213328.

Gravallese EM, Schett G. Effects of the IL-23-IL-17 pathway on bone in spondyloarthritis. Nat Rev Rheumatol. 2018; https://doi.org/10.1038/s41584-018-0091-8.

International Genetics of Ankylosing Spondylitis Consortium (IGAS), Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P, Cremin K, Pryce K, Harris J, Lee S, Joo KB, Shim SC, Weisman M, Ward M, Zhou X, Garchon HJ, Chiocchia G, Nossent J, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013; https://doi.org/10.1038/ng.2667.

Ferreira MA, Mangino M, Brumme CJ, Zhao ZZ, Medland SE, Wright MJ, Nyholt DR, Gordon S, Campbell M, BP ME, Henders A, Evans DM, Lanchbury JS, Pereyra F, International HIV Controllers Study, Walker BD, Haas DW, Soranzo N, Spector TD, et al. Quantitative trait loci for CD4:CD8 lymphocyte ratio are associated with risk of type 1 diabetes and HIV-1 immune control. Am J Hum Genet. 2010; https://doi.org/10.1016/j.ajhg.2009.12.008.

Lau MC, Keith P, Costello ME, Bradbury LA, Hollis KA, Thomas R, Thomas GP, Brown MA, Kenna TJ. Genetic association of ankylosing spondylitis with TBX21 influences T-bet and pro-inflammatory cytokine expression in humans and SKG mice as a model of spondyloarthritis. Ann Rheum Dis. 2017; https://doi.org/10.1136/annrheumdis-2015-208677.

Cherqaoui B, Crémazy F, Hue C, Garchon H-J, Breban M, Costantino F. Epigenetics of spondyloarthritis. Joint Bone Spine. 2020; https://doi.org/10.1016/j.jbspin.2020.06.003.

Prajzlerová K, Grobelná K, Hušáková M, Forejtová Š, Jüngel A, Gay S, Vencovský J, Pavelka K, Šenolt L, Filková M. Association between circulating miRNAs and spinal involvement in patients with axial spondyloarthritis. PLoS One. 2017; https://doi.org/10.1371/journal.pone.0185323.

Gracey E, Yao Y, Green B, Qaiyum Z, Baglaenko Y, Lin A, Anton A, Ayearst R, Yip P, Inman RD. Sexual dimorphism in the Th17 signature of ankylosing spondylitis. Arthritis Rheumatol. 2016; https://doi.org/10.1002/art.39464.

Vanaki N, Aslani S, Jamshidi A, Mahmoudi M. Role of innate immune system in the pathogenesis of ankylosing spondylitis. Biomed Pharmacother. 2018; https://doi.org/10.1016/j.biopha.2018.05.097.

Chimenti MS, Perricone C, Conigliaro P, Triggianese P, D’Antonio A, de Martino E, Fonti GL, Caso F, Costa L, Perricone R. Tackling the autoimmune side in spondyloarthritis: a systematic review. Autoimmun Rev. 2020; https://doi.org/10.1016/j.autrev.2020.102648. Systematic review which showed that genetic background in combination with mechanical stress leads to the activation of both innate and acquired immune responses in SpA pathogenesis.

Braun J, Bollow M, Neure L, Seipelt E, Seyrekbasan F, Herbst H, Eggens U, Distler A, Sieper J. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum. 1995; https://doi.org/10.1002/art.1780380407.

Sveaas SH, Berg IJ, Provan SA, Semb AG, Olsen IC, Ueland T, Aukrust P, Vøllestad N, Hagen KB, Kvien TK, Dagfinrud H. Circulating levels of inflammatory cytokines and cytokine receptors in patients with ankylosing spondylitis: a cross-sectional comparative study. Scand J Rheumatol. 2015; https://doi.org/10.3109/03009742.2014.956142.

Christodoulou-Vafeiadou E, Geka C, Ntari L, Kranidioti K, Argyropoulou E, Meier F, Armaka M, Mourouzis I, Pantos C, Rouchota M, Loudos G, Denis MC, Karagianni N, Kollias G. Ectopic bone formation and systemic bone loss in a transmembrane TNF-driven model of human spondyloarthritis. Arthritis Res Ther. 2020; https://doi.org/10.1186/s13075-020-02327-4.

Asadbeik M, Farazmand A, Vanaki N, Mostafaei S, Jamshidi A, Ahmadzadeh N, Vojdanian M, Mohammad–Amoli M, Mahmoudi M. Gene expression profile of proinflammatory cytokines in Iranian patients with ankylosing spondylitis. Rheumatology Research. 2017; https://doi.org/10.22631/rr.2017.69997.1014

Zambrano-Zaragoza JF, Agraz-Cibrian JM, González-Reyes C, Durán-Avelar Mde J, Vibanco-Pérez N. Ankylosing spondylitis: from cells to genes. Int J Inflam. 2013; https://doi.org/10.1155/2013/501653.

Neve A, Maruotti N, Corrado A, Cantatore FP. Pathogenesis of ligaments ossification in spondyloarthritis: insights and doubts. Ann Med. 2017; https://doi.org/10.1080/07853890.2016.1243802.

van de Loo FA, Joosten LA, van Lent PL, Arntz OJ, van den Berg WB. Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum. 1995; https://doi.org/10.1002/art.1780380204.

Chimenti MS, Sunzini F, Fiorucci L, Botti E, Fonti GL, Conigliaro P, Triggianese P, Costa L, Caso F, Giunta A, Esposito M, Bianchi L, Santucci R, Perricone R. Potential role of cytochrome c and tryptase in psoriasis and psoriatic arthritis pathogenesis: focus on resistance to apoptosis and oxidative stress. Front in Immunol. 2018; https://doi.org/10.3389/fimmu.2018.02363.

Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL. IL-17 receptor-based signaling and implications for disease. Nat Immunol. 2019; https://doi.org/10.1038/s41590-019-0514-y.

Sieper J, Poddubnyy D, Miossec P. The IL-23–IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat Rev Rheumatol. 2019; https://doi.org/10.1038/s41584-019-0294-7.

Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015; https://doi.org/10.3389/fimmu.2015.00263.

Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008; https://doi.org/10.2741/2692.

Akhtari M, Zargar SJ, Vojdanian M, Jamshidi A, Mahmoudi M. Monocyte-derived and M1 macrophages from ankylosing spondylitis patients released higher TNF-α and expressed more IL1B in response to BzATP than macrophages from healthy subjects. Sci Rep. 2021; https://doi.org/10.1038/s41598-021-96262-2.

Baeten D, Kruithof E, De Rycke L, Boots AM, Mielants H, Veys EM, De Keyser F. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy. Arthritis Res Ther. 2005; https://doi.org/10.1186/ar1501.

Vandooren B, Noordenbos T, Ambarus C, Krausz S, Cantaert T, Yeremenko N, Boumans M, Lutter R, Tak PP, Baeten D. Absence of a classically activated macrophage cytokine signature in peripheral spondylarthritis, including psoriatic arthritis. Arthritis Rheum. 2009; https://doi.org/10.1002/art.24406.

Lin S, Qiu M, Chen J. IL-4 modulates macrophage polarization in ankylosing spondylitis. Cell Physiol Biochem. 2015; https://doi.org/10.1159/000374026.

Chu CQ, Swart D, Alcorn D, Tocker J, Elkon KB. Interferon-gamma regulates susceptibility to collagen-induced arthritis through suppression of interleukin-17. Arthritis Rheum. 2007; https://doi.org/10.1002/art.22453.

Rezaiemanesh A, Mahmoudi M, Amirzargar AA, Vojdanian M, Jamshidi AR, Nicknam MH. Ankylosing spondylitis M-CSF-derived macrophages are undergoing unfolded protein response (UPR) and express higher levels of interleukin-23. Mod Rheumatol. 2017; https://doi.org/10.1080/14397595.2016.1259716.

Wright PB, McEntegart A, McCarey D, McInnes IB, Siebert S, Milling SW. Ankylosing spondylitis patients display altered dendritic cell and T cell populations that implicate pathogenic roles for the IL-23 cytokine axis and intestinal inflammation. Rheumatology (Oxford). 2016; https://doi.org/10.1093/rheumatology/kev245.

Slobodin G, Rosner I, Kessel A. Dendritic cells in the pathogenesis of ankylosing spondylitis and axial spondyloarthritis. Clin Rheumatol. 2019; https://doi.org/10.1007/s10067-018-4388-4.

Talpin A, Costantino F, Bonilla N, Leboime A, Letourneur F, Jacques S, Dumont F, Amraoui S, Dutertre CA, Garchon HJ, Breban M, Chiocchia G. Monocyte-derived dendritic cells from HLA-B27+ axial spondyloarthritis (SpA) patients display altered functional capacity and deregulated gene expression. Arthritis Res Ther. 2014; https://doi.org/10.1186/s13075-014-0417-0.

Cortes A, Maksymowych WP, Wordsworth BP, Inman RD, Danoy P, Rahman P, Stone MA, Corr M, Gensler LS, Gladman D, Morgan A, Marzo-Ortega H, Ward MM, SPARCC (Spondyloarthritis Research Consortium of Canada), TASC (Australo-Anglo-American Spondyloarthritis Consortium), Learch TJ, Reveille JD, Brown MA, Weisman MH. Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Ann Rheum Dis. 2015; https://doi.org/10.1136/annrheumdis-2013-204835.

Scrivo R, Morrone S, Spadaro A, Santoni A, Valesini G. Evaluation of degranulation and cytokine production in natural killer cells from spondyloarthritis patients at single-cell level. Cytometry B Clin Cytom. 2011; https://doi.org/10.1002/cyto.b.20549.

Díaz-Peña R, Vidal-Castiñeira JR, Mulero J, Sánchez A, Queiro R, López-Larrea C. Activating killer immunoglobulin-like receptors genes are associated with increased susceptibility to ankylosing spondylitis. Clin Exp Immunol. 2015; https://doi.org/10.1111/cei.12568.

Akalin N, Soy M. Natural killer and natural killer t cells as a prognostic factor for rheumatoid arthritis and ankylosing spondylitis. Int Jour of Biomed Res. 2015; https://doi.org/10.7439/ijbr.v6i5.2004.

Chan AT, Kollnberger SD, Wedderburn LR, Bowness P. Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum. 2005; https://doi.org/10.1002/art.21395.

Kollnberger S, Bird L, Sun MY, Retiere C, Braud VM, McMichael A, Bowness P. Cell-surface expression and immune receptor recognition of HLA-B27 homodimers. Arthritis Rheum. 2002; https://doi.org/10.1002/art.10605.

Hacquard-Bouder C, Chimenti MS, Giquel B, Donnadieu E, Fert I, Schmitt A, André C, Breban M. Alteration of antigen-independent immunological synapse formation between dendritic cells and CD4+ T cells, in HLA-B27 transgenic rat: selective impairment of costimulatory molecules engagement, by mature HLA-B27. Arthritis Rheum. 2007; https://doi.org/10.1002/art.22572.

Rosine N, Miceli-Richard C. Innate cells: the alternative source of IL-17 in axial and peripheral spondyloarthritis? Front Immunol. 2021; https://doi.org/10.3389/fimmu.2020.553742. Review which described the different IL-17 mechanisms of production, suggesting a path to understand why IL-17A blocking agents are effective in axSpA in contrast to IL-23 blocking drugs.

Kusuda M, Haroon N, Nakamura A. Complexity of enthesitis and new bone formation in ankylosing spondylitis: current understanding of the immunopathology and therapeutic approaches. Mod Rheumatol. 2021; https://doi.org/10.1093/mr/roab057.

Corpuz TM, Vazquez-Lombardi R, Luong JK, Warren J, Stolp J, Christ D, King C, Brink R, Sprent J, Webster KE. IL-2 shapes the survival and plasticity of IL-17-producing γδ T cells. J Immunol. 2017; https://doi.org/10.4049/jimmunol.1700335.

Ciccia F, Guggino G, Rizzo A, Saieva L, Peralta S, Giardina A, Cannizzaro A, Sireci G, De Leo G, Alessandro R, Triolo G. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann Rheum Dis. 2015; https://doi.org/10.1136/annrheumdis-2014-206323.

Hayashi E, Chiba A, Tada K, Haga K, Kitagaichi M, Nakajima S, Kusaoi M, Sekiya F, Ogasawara M, Yamaji K, Tamura N, Takasaki Y, Miyake S. Involvement of mucosal-associated invariant T cells in ankylosing spondylitis. J Rheumatol. 2016; https://doi.org/10.3899/jrheum.151133.

Berthelot JM, Le Goff B, Maugars Y. Bone marrow mesenchymal stem cells in rheumatoid arthritis, spondyloarthritis, and ankylosing spondylitis: problems rather than solutions? Arthritis Res Ther. 2019; https://doi.org/10.1186/s13075-019-2014-8.

Kuca-Warnawin E, Plebańczyk M, Bonek K, Kontny E. Direct anti-proliferative effect of adipose-derived mesenchymal stem cells of ankylosing spondylitis patients on allogenic CD4+ cells. Reumatologia. 2021; https://doi.org/10.5114/reum.2021.103940.

Zheng G, Xie Z, Wang P, Li J, Li M, Cen S, Tang S, Liu W, Ye G, Li Y, Wang S, Wu X, Su H, Wu Y, Shen H. Enhanced osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis: a study based on a three-dimensional biomimetic environment. Cell Death Dis. 2019; https://doi.org/10.1038/s41419-019-1586-1.

El-Zayadi AA, Jones EA, Churchman SM, Baboolal TG, Cuthbert RJ, El-Jawhari JJ, Badawy AM, Alase AA, El-Sherbiny YM, McGonagle D. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology (Oxford). 2017; https://doi.org/10.1093/rheumatology/kew384.

Xie Z, Wang P, Li J, Li Y, Wang S, Wu X, Sun S, Cen S, Su H, Deng W, Liu Z, Ouyang Y, Wu Y, Shen H. MCP1 triggers monocyte dysfunctions during abnormal osteogenic differentiation of mesenchymal stem cells in ankylosing spondylitis. J Mol Med (Berl). 2017; https://doi.org/10.1007/s00109-016-1489-x.

Liu CH, Raj S, Chen CH, Hung KH, Chou CT, Chen IH, Chien JT, Lin IY, Yang SY, Angata T, Tsai WC, Wei JC, Tzeng IS, Hung SC, Lin KI. HLA-B27-mediated activation of TNAP phosphatase promotes pathogenic syndesmophyte formation in ankylosing spondylitis. J Clin Invest. 2019; https://doi.org/10.1172/JCI125212.

Liu W, Wang P, Xie Z, Wang S, Ma M, Li J, Li M, Cen S, Tang S, Zheng G, Ye G, Wu X, Wu Y, Shen H. Abnormal inhibition of osteoclastogenesis by mesenchymal stem cells through the miR-4284/CXCL5 axis in ankylosing spondylitis. Cell Death Dis. 2019; https://doi.org/10.1038/s41419-019-1448-x.

Ramos M, Alvarez I, Sesma L, Logean A, Rognan D, Lopez de Castro JA. Molecular mimicry of an HLA-B27-derived ligand of arthritis-linked subtypes with chlamydial proteins. J Biol Chem. 2002; https://doi.org/10.1074/jbc.m205470200.

Revell PA, Mayston V. Histopathology of the synovial membrane of peripheral joints in ankylosing spondylitis. Ann Rheum Dis. 1982; https://doi.org/10.1136/ard.41.6.579.

Stoll ML. Interactions of the innate and adaptive arms of the immune system in the pathogenesis of spondyloarthritis. Clin Exp Rheumatol. 2011;

Wang C, Liao Q, Hu Y, Zhong D. T lymphocyte subset imbalances in patients contribute to ankylosing spondylitis. Exp Ther Med. 2015; https://doi.org/10.3892/etm.2014.2046.

Liu D, Liu B, Lin C, Gu J. Imbalance of peripheral lymphocyte subsets in patients with ankylosing spondylitis: a meta-analysis. Front Immunol. 2021; https://doi.org/10.3389/fimmu.2021.696973. Meta-analysis which showed that ankylosing spondylitis is a consequence of disrupted balance of both innate immune system and acquired immune system.

Wang J, Zhao Q, Wang G, Yang C, Xu Y, Li Y, Yang P. Circulating levels of Th1 and Th2 chemokines in patients with ankylosing spondylitis. Cytokine. 2016; https://doi.org/10.1016/j.cyto.2016.01.012.

Limón-Camacho L, Vargas-Rojas MI, Vázquez-Mellado J, Casasola-Vargas J, Moctezuma JF, Burgos-Vargas R, Llorente L. In vivo peripheral blood proinflammatory T cells in patients with ankylosing spondylitis. J Rheumatol. 2012; https://doi.org/10.3899/jrheum.110862.

Zhang L, Li YG, Li YH, Qi L, Liu XG, Yuan CZ, Hu NW, Ma DX, Li ZF, Yang Q, Li W, Li JM. Increased frequencies of Th22 cells as well as Th17 cells in the peripheral blood of patients with ankylosing spondylitis and rheumatoid arthritis. PLoS One. 2012; https://doi.org/10.1371/journal.pone.0031000.

Jethwa H, Bowness P. The interleukin (IL)-23/IL-17 axis in ankylosing spondylitis: new advances and potentials for treatment. Clin Exp Immunol. 2016; https://doi.org/10.1111/cei.12670.

Konya C, Paz Z, Apostolidis SA, Tsokos GC. Update on the role of interleukin 17 in rheumatologic autoimmune diseases. Cytokine. 2015; https://doi.org/10.1016/j.cyto.2015.01.003.

Neumann C, Scheffold A, Rutz S. Functions and regulation of T cell-derived interleukin-10. Semin Immunol. 2019; https://doi.org/10.1016/j.smim.2019.101344.

Appel H, Wu P, Scheer R, Kedor C, Sawitzki B, Thiel A, Radbruch A, Sieper J, Syrbe U. Synovial and peripheral blood CD4+FoxP3+ T cells in spondyloarthritis. J Rheumatol. 2011; https://doi.org/10.3899/jrheum.110377.

Zhang L, Jarvis LB, Baek HJ, Gaston JS. Regulatory IL4+CD8+ T cells in patients with ankylosing spondylitis and healthy controls. Ann Rheum Dis. 2009; https://doi.org/10.1136/ard.2008.088120.

Watad A, Rowe H, Russell T, Zhou Q, Anderson LK, Khan A, Dunsmuir R, Loughenbury P, Borse V, Rao A, Millner PA, Bragazzi NL, Amital H, Cuhtbert R, Wittmann M, Sharif K, Kenna T, Brown MA, Newton D, et al. Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression. Ann Rheum Dis. 2020; https://doi.org/10.1136/annrheumdis-2020-217309. Study that demonstrated the presence of CD4+ and CD8+ T cells in the human enthesis that secrete TNF and IL-17A without IL-23 stimulation.

Jiang Y, Yang M, Zhang Y, Huang Y, Wu J, Xie Y, Wei Q, Liao Z, Gu J. Dynamics of adaptive immune cell and NK cell subsets in patients with ankylosing spondylitis after IL-17A inhibition by secukinumab. Front Pharmacol. 2021; https://doi.org/10.3389/fphar.2021.738316.

Mauro D, Simone D, Bucci L, Ciccia F. Novel immune cell phenotypes in spondyloarthritis pathogenesis. Semin Immunopathol. 2021; https://doi.org/10.1007/s00281-021-00837-0.

Zundler S, Becker E, Spocinska M, Slawik M, Parga-Vidal L, Stark R, Wiendl M, Atreya R, Rath T, Leppkes M, Hildner K, López-Posadas R, Lukassen S, Ekici AB, Neufert C, Atreya I, van Gisbergen KPJM, Neurath MF. Hobit- and Blimp-1-driven CD4 + tissue-resident memory T cells control chronic intestinal inflammation. Nat Immunol. 2019; https://doi.org/10.1038/s41590-018-0298-5.

Qaiyum Z, Gracey E, Yao Y, Inman RD. Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis. Ann Rheum Dis. 2019; https://doi.org/10.1136/annrheumdis-2019-215349.

Guggino G, Rizzo A, Mauro D, Macaluso F, Ciccia F. Gut-derived CD8+ tissue-resident memory T cells are expanded in the peripheral blood and synovia of SpA patients. Ann Rheum Dis. 2021; https://doi.org/10.1136/annrheumdis-2019-216456.

Ge L, Wang J, Zhu BQ, Zhang ZS. Effect of abnormal activated B cells in patients with ankylosing spondylitis and its molecular mechanism. Eur Rev Med Pharmacol Sci. 2018; https://doi.org/10.26355/eurrev_201805_14941.

Lin Q, Gu JR, Li TW, Zhang FC, Lin ZM, Liao ZT, Wei QJ, Cao SY, Li L. Value of the peripheral blood B-cells subsets in patients with ankylosing spondylitis. Chin Med J (Engl). 2009;122:1784–9.

PubMed  Google Scholar 

Bautista-Caro MB, Arroyo-Villa I, Castillo-Gallego C, de Miguel E, Peiteado D, Plasencia-Rodríguez C, Villalba A, Sánchez-Mateos P, Puig-Kröger A, Martín-Mola E, Miranda-Carús ME. Decreased frequencies of circulating follicular helper T cell counterparts and plasmablasts in ankylosing spondylitis patients naïve for TNF blockers. PLoS One. 2014; https://doi.org/10.1371/journal.pone.0107086.

Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol. 2009; https://doi.org/10.1038/ni.1731.

Peng SL, Szabo SJ, Glimcher LH. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc Natl Acad Sci U S A. 2002; https://doi.org/10.1073/pnas.082114899.

Knox JJ, Myles A, Cancro MP. T-bet+ memory B cells: generation, function, and fate. Immunol Rev. 2019; https://doi.org/10.1111/imr.12736.

Wilbrink R, Spoorenberg A, Verstappen GMPJ, Kroese FGM. B Cell involvement in the pathogenesis of ankylosing spondylitis. Int J Mol Sci. 2021; https://doi.org/10.3390/ijms222413325.

Kwon OC, Lee EJ, Lee JY, Youn J, Kim TH, Hong S, Lee CK, Yoo B, Robinson WH, Kim YG. Prefoldin 5 and anti-prefoldin 5 antibodies as biomarkers for uveitis in ankylosing spondylitis. Front Immunol. 2019; https://doi.org/10.3389/fimmu.2019.00384.

Curry R, Thoen J, Shelborne C, Gaudernack G, Messner R. Antibodies to and elevations of beta 2 microglobulin in the serum of ankylosing spondylitis patients. Arthritis Rheum. 1982; https://doi.org/10.1002/art.1780250403.

Baerlecken NT, Nothdorft S, Stummvoll GH, Sieper J, Rudwaleit M, Reuter S, Matthias T, Schmidt RE, Witte T. Autoantibodies against CD74 in spondyloarthritis. Ann Rheum Dis. 2014; https://doi.org/10.1136/annrheumdis-2012-202208.

Witte T, Köhler M, Georgi J, Schweikhard E, Matthias T, Baerlecken N, Hermann KG, Sieper J, Rudwaleit M, Poddubnyy D. IgA antibodies against CD74 are associated with structural damage in the axial skeleton in patients with axial spondyloarthritis. Clin Exp Rheumatol. 2020;38:1127–31.

PubMed  Google Scholar 

Hauser B, Zhao S, Visconti MR, Riches PL, Fraser WD, Piec I, Goodson NJ, Ralston SH. Autoantibodies to osteoprotegerin are associated with low hip bone mineral density and history of fractures in axial spondyloarthritis: a cross-sectional observational study. Calcif Tissue Int. 2017; https://doi.org/10.1007/s00223-017-0291-2.

Chen Y, Zhou F, Liu H, Li J, Che H, Shen J, Luo E. SIRT1, a promising regulator of bone homeostasis. Life Sci. 2021; https://doi.org/10.1016/j.lfs.2021.119041.

Hu Q, Sun Y, Li Y, Shi H, Teng J, Liu H, Cheng X, Ye J, Su Y, Yin Y, Liu M, Wang J, Yang C. Anti-SIRT1 autoantibody is elevated in ankylosing spondylitis: a potential disease biomarker. BMC Immunol. 2018; https://doi.org/10.1186/s12865-018-0280-x.

Tsui FW, Tsui HW, Las Heras F, Pritzker KP, Inman RD. Serum levels of novel noggin and sclerostin-immune complexes are elevated in ankylosing spondylitis. Ann Rheum Dis. 2014; https://doi.org/10.1136/annrheumdis-2013-203630.

Appel H, Ruiz-Heiland G, Listing J, Zwerina J, Herrmann M, Mueller R, Haibel H, Baraliakos X, Hempfing A, Rudwaleit M, Sieper J, Schett G. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2009; https://doi.org/10.1002/art.24888.

Luchetti MM, Ciccia F, Avellini C, Benfaremo D, Guggino G, Farinelli A, Ciferri M, Rossini M, Svegliati S, Spadoni T, Bolognini L, Fava G, Mosca P, Gesuita R, Skrami E, Triolo G, Gabrielli A. Sclerostin and antisclerostin antibody serum levels predict the presence of axial spondyloarthritis in patients with inflammatory bowel disease. J Rheumatol. 2018; https://doi.org/10.3899/jrheum.170833.

Unal M, Creecy A, Nyman JS. The role of matrix composition in the mechanical behavior of bone. Curr Osteoporos Rep. 2018; https://doi.org/10.1007/s11914-018-0433-0.

Mizoguchi T, Ono N. The diverse origin of bone-forming osteoblasts. J Bone Miner Res. 2021; https://doi.org/10.1002/jbmr.4410.

Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020; https://doi.org/10.3390/cells9092073. Review which showed the complex osteoblast-osteoclast communication in preserving bone homeostasis.

Robling AG, Bonewald LF. The osteocyte: new insights. Annu Rev Physiol. 2020; https://doi.org/10.1146/annurev-physiol-021119-034332.

Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Recent advances in osteoclast biological behavior. Front Cell Dev Biol. 2021; https://doi.org/10.3389/fcell.2021.788680.

Ohba S. Genome-scale actions of master regulators directing skeletal development. Jpn Dent Sci Rev. 2021; https://doi.org/10.1016/j.jdsr.2021.10.001.

Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999; https://doi.org/10.1038/8792.

Donsante S, Palmisano B, Serafini M, Robey PG, Corsi A, Riminucci M. From stem cells to bone-forming cells. Int J Mol Sci. 2021; https://doi.org/10.3390/ijms22083989.

Park-Min KH. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci. 2018; https://doi.org/10.1007/s00018-018-2817-9.

Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007; https://doi.org/10.1186/ar2165.

Wythe SE, Nicolaidou V, Horwood NJ. Cells of the immune system orchestrate changes in bone cell function. Calcif Tissue Int. 2014; https://doi.org/10.1007/s00223-013-9764-0.

Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen. 2020; https://doi.org/10.1186/s41232-019-0111-3.

Walsh NC, Gravallese EM. Bone remodeling in rheumatic disease: a question of balance. Immunol Rev. 2010; https://doi.org/10.1111/j.0105-2896.2009.00857.x.

留言 (0)

沒有登入
gif