Dynamic alternative DNA structures in biology and disease

Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022). The most recent and compete human genome sequencing assembly reveals more repetitive elements in the human genome than researchers have previously estimated, which could potentially support non-B DNA formation.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plohl, M., Luchetti, A., Mestrovic, N. & Mantovani, B. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409, 72–82 (2008).

Article  CAS  PubMed  Google Scholar 

Thakur, J., Packiaraj, J. & Henikoff, S. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci. 22, 4309 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herbert, A. ALU non-B-DNA conformations, flipons, binary codes and evolution. R. Soc. Open. Sci. 7, 200222 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasinathan, S. & Henikoff, S. Non-B-form DNA is enriched at centromeres. Mol. Biol. Evol. 35, 949–962 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, G. & Vasquez, K. M. Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair 19, 143–151 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Choi, J. & Majima, T. Conformational changes of non-B DNA. Chem. Soc. Rev. 40, 5893–5909 (2011).

Article  CAS  PubMed  Google Scholar 

Guiblet, W. M. et al. Long-read sequencing technology indicates genome-wide effects of non-B DNA on polymerization speed and error rate. Genome Res. 28, 1767–1778 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marshall, P. R. et al. Dynamic regulation of Z-DNA in the mouse prefrontal cortex by the RNA-editing enzyme Adar1 is required for fear extinction. Nat. Neurosci. 23, 718–729 (2020). The ADAR1 protein binds to Z-DNA in the mouse prefrontal cortex during fear extinction learning and supresses or reduces Z-DNA formation, which is suggested to be required for memory flexibility.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007).

Article  CAS  PubMed  Google Scholar 

Praseuth, D., Guieysse, A. L. & Helene, C. Triple helix formation and the antigene strategy for sequence-specific control of gene expression. Biochim. Biophys. Acta 1489, 181–206 (1999).

Article  CAS  PubMed  Google Scholar 

Huppert, J. L. & Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 35, 406–413 (2007).

Article  CAS  PubMed  Google Scholar 

Marsico, G. et al. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 47, 3862–3874 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valton, A. L. & Prioleau, M. N. G-quadruplexes in DNA replication: a problem or a necessity? Trends Genet. 32, 697–706 (2016).

Article  CAS  PubMed  Google Scholar 

Wang, G. & Vasquez, K. M. Effects of replication and transcription on DNA structure-related genetic instability. Genes 8, 17 (2017).

Article  CAS  PubMed Central  Google Scholar 

Prioleau, M. N. G-quadruplexes and DNA replication origins. Adv. Exp. Med. Biol. 1042, 273–286 (2017).

Article  CAS  PubMed  Google Scholar 

St Germain, C., Zhao, H. & Barlow, J. H. Transcription-replication collisions — a series of unfortunate events. Biomolecules 11, 1249 (2021).

Article  Google Scholar 

Liu, G., Chen, X., Bissler, J. J., Sinden, R. R. & Leffak, M. Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells. Nat. Chem. Biol. 6, 652–659 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomes-Pereira, M., Fortune, M. T. & Monckton, D. G. Mouse tissue culture models of unstable triplet repeats: in vitro selection for larger alleles, mutational expansion bias and tissue specificity, but no association with cell division rates. Hum. Mol. Genet. 10, 845–854 (2001).

Article  CAS  PubMed  Google Scholar 

Fu, Y. H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

Article  CAS  PubMed  Google Scholar 

Kremer, E. J. et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252, 1711–1714 (1991).

Article  CAS  PubMed  Google Scholar 

La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

Article  PubMed  Google Scholar 

Catasus, L. et al. Frameshift mutations at coding mononucleotide repeat microsatellites in endometrial carcinoma with microsatellite instability. Cancer 88, 2290–2297 (2000).

Article  CAS  PubMed  Google Scholar 

Georgakopoulos-Soares, I. et al. Transcription-coupled repair and mismatch repair contribute towards preserving genome integrity at mononucleotide repeat tracts. Nat. Commun. 11, 1980 (2020). Using bioinformatic approaches, this study reports transcription-associated asymmetrical distribution of repetitive elements, insertions and deletions at repeats in human cancer genomes, with involvement of DNA repair pathways.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rothenburg, S., Koch-Nolte, F., Rich, A. & Haag, F. A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity. Proc. Natl Acad. Sci. USA 98, 8985–8990 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malik, I., Kelley, C. P., Wang, E. T. & Todd, P. K. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat. Rev. Mol. Cell Biol. 22, 589–607 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paulson, H. L. & Fischbeck, K. H. Trinucleotide repeats in neurogenetic disorders. Annu. Rev. Neurosci. 19, 79–107 (1996).

Article  CAS  PubMed  Google Scholar 

McMurray, C. T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 11, 786–799 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones, L., Houlden, H. & Tabrizi, S. J. DNA repair in the trinucleotide repeat disorders. Lancet Neurol. 16, 88–96 (2017).

Article  CAS  PubMed  Google Scholar 

Cleary, J. D. & Pearson, C. E. Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability. Trends Genet. 21, 272–280 (2005).

Article  CAS  PubMed  Google Scholar 

McKinney, J. A. et al. Distinct DNA repair pathways cause genomic instability at alternative DNA structures. Nat. Commun. 11, 236 (2020). This study reports that the MMR protein complex MSH2–MSH3 binds to Z-DNA and recruits the NER nuclease ERCC1–XPF to the site, resulting in structure-specific cleavage and DSBs at Z-DNA regardless of DNA replication status.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, J. et al. Distinct mechanisms of nuclease-directed DNA-structure-induced genetic instability in cancer genomes. Cell Rep. 22, 1200–1210 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iyer, R. R., Pluciennik, A., Napierala, M. & Wells, R. D. DNA triplet repeat expansion and mismatch repair. Annu. Rev. Biochem. 84, 199–226 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sundararajan, R. & Freudenreich, C. H. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae. PLoS Genet. 7, e1001339 (2011). Long CAG/CTG repeats trigger an MRX-dependent DNA damage checkpoint response in budding yeast, which affects the cell cycle, leading to repeat-dependent S-phase delays and G2/M arrests, which results in morphological abnormalities.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voineagu, I., Surka, C. F., Shishkin, A. A., Krasilnikova, M. M. & Mirkin, S. M. Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat. Struct. Mol. Biol. 16, 226–228 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif