Biological evaluation of imidazopyridine derivatives as potential anticancer agents against breast cancer cells

Vanda D, Zajdel P, Soural M. Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. Eur J Med Chem. 2019;181:111569.

Article  PubMed  Google Scholar 

Devi N, Singh D K, Rawal R, Bariwal J, Singh V. Medicinal attributes of imidazo[1,2-a]pyridine derivatives: an update. Curr Top Medicinal Chem. 2016;16:2963–94.

Article  CAS  Google Scholar 

Mohana Roopan S, Patil SM, Palaniraja J. Recent synthetic scenario on imidazo[1,2-a]pyridines chemical intermediate. Res Chem Intermed. 2016;42:2749–90.

Article  CAS  Google Scholar 

Tashrifi Z, Mohammadi-Khanaposhtani M, Larijani B, Mahdavi M. C3-Functionalization of Imidazo[1,2-a]pyridines. Eur J Org Chem. 2020;2020:269–84.

Article  CAS  Google Scholar 

Ravi C, Adimurthy S. Synthesis of Imidazo[1,2-a]pyridines: C-H Functionalization in the Direction of C-S Bond Formation. Chem Rec. 2017;17:1019–38.

Article  CAS  PubMed  Google Scholar 

Hamdouchi C, de Blas J, del Prado M, Gruber J, Heinz BA, Vance L. 2-amino-3-substituted-6-[(E)-1-phenyl-2-(N-methylcarbamoyl)vinyl]imidazo-[1,2-a]pyridines as a novel class of inhibitors of human rhinovirus: Stereospecific synthesis and antiviral activity. J Med Chem. 1999;42:50–9.

Lhassani M, Chavignon O, Chezal J-M, Teulade J-C, Chapat J-P, Snoeck R, et al. Synthesis and antiviral activity of imidazo[1,2-a]pyridines. Eur J Medicinal Chem. 1999;34:271–4.

Article  CAS  Google Scholar 

Véron JB, Allouchi H, Enguehard-Gueiffier C, Snoeck R, Andrei G, de Clercq E, et al. Influence of 6- or 8-substitution on the antiviral activity of 3-arylalkylthiomethylimidazo[1,2-a]pyridine against human cytomegalovirus (CMV) and varicella-zoster virus (VZV): Part II. Bioorg Medicinal Chem. 2008;16:9536–45.

Article  Google Scholar 

Rival Y, Grassy G, Michel G. Synthesis and antibacterial activity of some imidazo(1,2-a)pyrimidine derivatives. Chem Pharm Bull. 1992;40:1170–6.

Article  CAS  Google Scholar 

Al-Tel TH, Al-Qawasmeh RA. Post Groebke-Blackburn multicomponent protocol: Synthesis of new polyfunctional imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine derivatives as potential antimicrobial agents. Eur J Medicinal Chem. 2010;45:5848–55.

Article  CAS  Google Scholar 

Biftu T, Feng D, Fisher M, Liang GB, Qian X, Scribner A, et al. Synthesis and SAR studies of very potent imidazopyridine antiprotozoal agents. Bioorg Medicinal Chem Lett. 2006;16:2479–83.

Article  CAS  Google Scholar 

Hieke M, Rödl CB, Wisniewska JM, la Buscató E, Stark H, Schubert-Zsilavecz M, et al. SAR-study on a new class of imidazo[1,2-a]pyridine-based inhibitors of 5-lipoxygenase. Bioorg Medicinal Chem Lett. 2012;22:1969–75.

Article  CAS  Google Scholar 

Linz S, Müller J, Hübner H, Gmeiner P, Troschütz R. Design, synthesis and dopamine D4 receptor binding activities of new N-heteroaromatic 5/6-ring Mannich bases. Bioorg Medicinal Chem. 2009;17:4448–58.

Article  CAS  Google Scholar 

Bagdi AK, Santra S, Monir K, Hajra A. Synthesis of imidazo[1,2-a]pyridines: A decade update. Chem Commun. 2015;51:1555–75.

Article  CAS  Google Scholar 

Dhas A, Deshmukh S, Pansare D, Pawar R, Kakade G. Synthesis of Imidazo [1, 2-a] Pyridine Derivatives Using Copper Silicate as an Efficient and Reusable Catalyst. Lett Appl NanoBioScience. 2021;10:2565–70.

Article  Google Scholar 

Ghosh P, Ganguly B, Kar B, Dwivedi S, Das S. Green procedure for highly efficient, rapid synthesis of imidazo[1,2-a]pyridine and its late stage functionalization. Synth Commun. 2018;48:1076–84.

Article  CAS  Google Scholar 

Sayeed IB, Vishnuvardhan MVPS, Nagarajan A, Kantevari S, Kamal A. Imidazopyridine linked triazoles as tubulin inhibitors, effectively triggering apoptosis in lung cancer cell line. Bioorg Chem. 2018;80:714–20.

Article  CAS  PubMed  Google Scholar 

Wu Y, Li L, Wen K, Deng J, Chen J, Shi J. et al. Copper-catalyzed C-3Functionalization of imidazo[1,2- a]pyridines with 3-indoleacetic acids. J Organic Chem. 2021;86:12394–402.

Sayeed I, bin, Lakshma Nayak V, Shareef MA, Chouhan NK, Kamal A. Design, synthesis and biological evaluation of imidazopyridine-propenone conjugates as potent tubulin inhibitors. Medchemcomm 2017;8:1000–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dahan-Farkas N, Langley C, Rousseau AL, Yadav DB, Davids H, de Koning CB. 6-substituted imidazo[1,2-a]pyridines: Synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2. Eur J Medicinal Chem. 2011;46:4573–83.

Article  CAS  Google Scholar 

Chitrakar R, Rawat D, Sistla R, Vadithe LN, Subbarayappa A. Design, synthesis and anticancer activity of sulfenylated imidazo-fused heterocycles. Bioorganic Med Chem Lett. 2021;49:128307.

Article  Google Scholar 

Gunaganti N, Kharbanda A, Lakkaniga NR, Zhang L, Cooper R, Yu Li H, et al. Catalyst free, C-3 functionalization of imidazo[1,2-a]pyridines to rapidly access new chemical space for drug discovery efforts. Chem Commun. 2018;54:12954–7.

Article  CAS  Google Scholar 

Kamal A, Reddy VS, Karnewar S, Chourasiya SS, Shaik AB, Kumar GB, et al. Synthesis and biological evaluation of imidazopyridine-oxindole conjugates as microtubule-targeting agents. ChemMedChem 2013;8:2015–25.

Article  CAS  PubMed  Google Scholar 

Martínez-Urbina MA, Zentella A, Vilchis-Reyes MA, Guzmán Á, Vargas O, Ramírez Apan MT, et al. 6-Substituted 2-(N-trifluoroacetylamino)imidazopyridines induce cell cycle arrest and apoptosis in SK-LU-1 human cancer cell line. Eur J Medicinal Chem. 2010;45:1211–9.

Article  Google Scholar 

Kim O, Jeong Y, Lee H, Hong SS, Hong S. Design and synthesis of imidazopyridine analogues as inhibitors of phosphoinositide 3-kinase signaling and angiogenesis. J Medicinal Chem. 2011;54:2455–66.

Article  CAS  Google Scholar 

Kamal A, Reddy JS, Ramaiah MJ, Dastagiri D, Bharathi EV, Prem Sagar MV, et al. Design, synthesis and biological evaluation of imidazopyridine/pyrimidine- chalcone derivatives as potential anticancer agents. Medchemcomm 2010;1:355–60.

Article  CAS  Google Scholar 

Almeida GM, Rafique J, Saba S, Siminski T, Mota NSRS, Filho DW, et al. Novel selenylated imidazo[1,2-a]pyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochemical Biophysical Res Commun. 2018;503:1291–7.

Article  CAS  Google Scholar 

Lacerda RB, Sales NM, da Silva LL, Tesch R, Miranda ALP, Barreiro EJ, et al. Novel potent imidazo[1,2-a]pyridine-N-glycinyl-hydrazone inhibitors of TNF-α production: in vitro and in vivo studies. PLoS ONE. 2014;9(3):e91660.

Article  PubMed  PubMed Central  Google Scholar 

Xi JB, Fang YF, Frett B, Zhu ML, Zhu T, Kong YN, et al. Structure-based design and synthesis of imidazo[1,2-a]pyridine derivatives as novel and potent Nek2 inhibitors with in vitro and in vivo antitumor activities. Eur J Medicinal Chem. 2017;126:1083–106.

Article  CAS  Google Scholar 

Aliwaini S, Awadallah AM, Morjan RY, Ghunaim M, Alqaddi H, Abuhamad AY, et al. Novel imidazo[1,2-a]pyridine inhibits AKT/mTOR pathway and induces cell cycle arrest and apoptosis in melanoma and cervical cancer cells. Oncol Lett. 2019;18:830–7.

CAS  PubMed  PubMed Central  Google Scholar 

Garamvölgyi R, Dobos J, Sipos A, Boros S, Illyés E, Baska F, et al. Design and synthesis of new imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrazine derivatives with antiproliferative activity against melanoma cells. Eur J Medicinal Chem. 2016;108:623–43.

Article  Google Scholar 

Altaher AMH, Adris MA, Aliwaini SH. Imidazo[1,2-a]pyridinebasedcompounds:thehopefulanti-cancer therapy. systematic review. Pharmacy 2021;12:79–85.

CAS  Google Scholar 

Jubeen F, Iqbal SZ, Shafiq N, Khan M, Parveen S, Iqbal M, et al. Eco-friendly synthesis of pyrimidines and its derivatives: A review on broad spectrum bioactive moiety with huge therapeutic profile. Synth Commun. 2018;48:601–25.

Article  CAS  Google Scholar 

Naik TA, Chikhalia KH. Studies on synthesis of pyrimidine derivatives and their pharmacological evaluation. 2007;4(1):60–6.

Malik A, Rasool N, Kanwal I, Hashmi MA, Zahoor AF, Ahmad G, et al. Suzuki–miyaura reactions of (4-bromophenyl)-4,6-dichloropyrimidine through commercially available palladium catalyst: Synthesis, optimization and their structural aspects identification through computational studies. Processes. 2020;8:1–12.

Article  Google Scholar 

Mahapatra A, Prasad T, Sharma T. Pyrimidine: a review on anticancer activity with key emphasis on SAR. Fut J Pharmaceutical Sci. 2021;7:123.

Article  Google Scholar 

Tylińska B, Wiatrak B, Czyżnikowska Ż, Cieśla-Niechwiadowicz A, Gębarowska E, Janicka-Kłos A. Novel pyrimidine derivatives as potential anticancer agents: Synthesis, biological evaluation and molecular docking study. Int J Mol Sci. 2021;22(8):3825.

Branković J, Milivojević N, Milovanović V, Simijonović D, Petrović ZD, Marković Z, et al. Evaluation of antioxidant and cytotoxic properties of phenolic N-acylhydrazones: structure–activity relationship. R Soc Open Sci. 2022;9:211853.

Thota S, Rodrigues DA, Pinheiro P, de SM, Lima LM, Fraga CAM, et al. N-Acylhydrazones as drugs. Bioorg Med Chem Lett. 2018;28:2797–806.

Article  CAS  PubMed  Google Scholar 

Cardoso LNF, Nogueira TCM, Rodrigues FAR, Oliveira ACA, Luciano MCS, Pessoa C, et al. N-acylhydrazones containing thiophene nucleus: a new anticancer class. Medicinal Chem Res. 2017;26:1605–8.

Article  CAS  Google Scholar 

Do Amaral DN, Cavalcanti BC, Bezerra DP, Ferreira PMP, de Castro RP, Sabino JR, et al. Docking, synthesis and antiproliferative activity of N-acylhydrazone derivatives designed as combretastatin A4 analogues. PLoS ONE. 2014;9(3):e85380.

Samala G, Nallangi R, Devi PB, Saxena S, Yadav R, Sridevi JP, et al. Identification and development of 2-methylimidazo[1,2-a]pyridine-3- carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Bioorg Medicinal Chem. 2014;22:4223–32.

Article  CAS  Google Scholar 

Hernández P, Cabrera M, Lavaggi ML, Celano L, Tiscornia I, Rodrigues Da Costa T, et al. Discovery of new orally effective analgesic and anti-inflammatory hybrid furoxanyl N-acylhydrazone derivatives. Bioorg Medicinal Chem. 2012;20:2158–71.

Article  Google Scholar 

Ribeiro IG, Christine da Silva KM, Parrinil SC, Luisa de Miranda AP, Fraga CA, Barreiro EJ. Synthesis and antinociceptive properties of new structurally planned imidazo[1,2-a]pyridine 3-acylarylhydrazone derivatives. 1998;33(3):225–35.

Musa MA, Cooperwood JS, Khan MOF, Rahman T. In-vitro antiproliferative activity of benzopyranone derivatives in comparison with standard chemotherapeutic Drugs. Arch Pharm (Weinh). 2011;344:102–10.

Article  CAS  Google Scholar 

Theodossiou TA, Ali M, Grigalavicius M, Grallert B, Dillard P, Schink KO, et al. Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT–tamoxifen hybrid therapy. npj Breast Cancer. 2019;5:13.

Spiegel S, Nohara K, Wang F. Glycosphingolipid composition of MDA-MB-231 and MCF-7 human breast cancer cell lines. 1998;48(2):149–57.

Shi Y, Ye P, Long X. Differential expression profiles of the transcriptome in breast cancer cell lines revealed by next generation sequencing. Cell Physiol Biochem. 2017;44:804–16.

Article 

留言 (0)

沒有登入
gif