An in vitro study of the 5-methyl- and 5-bromo/chloro substituted 2-hydroxy-3-nitrochalcones as α-glucosidase and/or α-amylase inhibitors with potential anti-inflammatory activity

WHO, World Health Organization. Global Report on Diabetes. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf, 2016 (Accessed 2021).

Vieira R, Souto SB, Sánchez-López E, Machado AL, Severino P, Jose S. et al. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome- Review of classical and new compounds: Part-I. Pharmaceuticals. 2019;12:152. https://doi.org/10.3390/ph12040152.

Article  CAS  PubMed Central  Google Scholar 

Chaudhury A, Duvoor C, Dendi VSR, Kraleti S, Chada A, Ravilla R. et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus, management. Front Endocrinol. 2017;8:1–12. 0.3389/fendo.2017.0000.

Article  Google Scholar 

Grosick R, Alvarado-Vazquez PA, Messersmith AR, Romero-Sandoval EA. High glucose induces a priming effect in macrophages and exacerbates the production of pro-inflammatory cytokines after a challenge. J Pain Res. 2018;11:1769–78. https://doi.org/10.2147/JPR.S164493.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meshkani R, Vakili S. Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta. 2016;462:77–89. https://doi.org/10.1016/j.cca.2016.08.015.

Article  CAS  PubMed  Google Scholar 

Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis G-E, Vogiatzi G, Spyridon P. et al. The role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol. 2019;14:50–59. https://doi.org/10.15420/ecr.2018.33.1.

Article  PubMed  PubMed Central  Google Scholar 

Imran S, Taha M, Selvaraj M, Ismail NH, Chigurupati S, Mohammad JI. Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorg Chem. 2017;73:121–7. https://doi.org/10.1016/j.bioorg.2017.06.007.

Article  CAS  PubMed  Google Scholar 

Alqahtani AS, Hidayathulla S, Rehman MT, ElGamal AA, Al-Massarani S, Razmovski-Naumovski V. et al. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules. 2020;10:61. https://doi.org/10.3390/biom10010061.

Article  CAS  Google Scholar 

Ghabi A, Brahmi J, Alminderej F, Messaoudi S, Vidald S, Kadrie A. et al. Multifunctional isoxazolidine derivatives as α-amylase and α-glucosidase inhibitors. Bioorg Chem. 2020;98:103713. https://doi.org/10.1016/j.bioorg.2020.103713.

Article  CAS  PubMed  Google Scholar 

Aispuro-Pérez A, López-Ávalos J, García-Páez F, Montes-Avila J, Picos Corrales LA, Ochoa-Terán A. et al. Synthesis and molecular docking studies of imines as α-glucosidase and α-amylase inhibitors. Bioorg Chem. 2020;94:103491. https://doi.org/10.1016/j.bioorg.2019.103491.

Article  CAS  PubMed  Google Scholar 

Ghani U. Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur J Med Chem. 2015;103:133–62. https://doi.org/10.1016/j.ejmech.2015.08.043.

Article  CAS  PubMed  Google Scholar 

Mahapatra DK, Asati V, Bharti SJ. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur J Med Chem. 2015;92:839–65. https://doi.org/10.1016/j.ejmech.2015.01.051.

Article  CAS  PubMed  Google Scholar 

Alberton AH, Damazio RG, Cazarolli LH, Chiaradia LD, Leal PC, Nunes RJ. et al. Influence of chalcone analogues on serum glucose levels in hyperglycemic rats. Chem Biol Interact. 2008;171:355–62. https://doi.org/10.1016/j.cbi.2007.11.001.

Article  CAS  PubMed  Google Scholar 

Gómez-Rivera A, Aguilar-Mariscal H, Romero-Ceronio N, Roa-de la Fuente LF, Lobato-García CE. Synthesis and anti-inflammatory activity of three nitro chalcones. Bioorg Med Chem Lett. 2013;23:5519–522. https://doi.org/10.1002/chin.201409094.

Article  PubMed  Google Scholar 

Olender J, Zwawiak L, Zaprutko L. Multidirectional efficacy of biologically active nitro compounds included in medicines. Pharmaceuticals. 2018;11:54 https://doi.org/10.3390/ph11020054.

Article  CAS  PubMed Central  Google Scholar 

Rahman A, Ali MT, Shawan MMAK, Sarwar MG, Khan MAK, Halim MA. Halogen-directed drug design for Alzheimer’s disease: A combined density functional and molecular docking study. SpringerPlus. 2016;5:1346–59. https://doi.org/10.1186/s40064-016-2996-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem. 2012;56:1363–88. https://doi.org/10.1021/jm3012068.

Article  CAS  Google Scholar 

Kolář M, Hobza P, Bronowska A. Plugging the explicit σ-holes in molecular docking. Chem Comm. 2013;49:981–3. https://doi.org/10.1039/c2cc37584b.

Article  CAS  PubMed  Google Scholar 

Filarowski A, Kochel A, Hansen PE, Urbanowicz A, Szymborska K. The role of ring substituents on hydrogen bonding of 5-cyano-2-hydroxyacetophenone and 2-hydroxy-4-methoxy-5-nitroacetophenone in the ground and excited states. J Mol Struct. 2007;844–845:77–88. https://doi.org/10.1016/j.molstruc.2007.04.007.

Article  CAS  Google Scholar 

Macrae CF, Bruno JJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E. et al. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr. 2008;41:466–70. https://doi.org/10.1107/S0021889807067908.

Article  CAS  Google Scholar 

Rezai T, Bock JA, Zhou MV, Kalyanraman C, Loky R, Jacobson M. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: Successful in silico prediction of the relative permeabilities of cyclic peptides. J Am Chem Soc. 2006;128:14073–80. https://doi.org/10.1021/ja063076p.

Article  CAS  PubMed  Google Scholar 

Chen H, Yan T, Song Z, Ying S, Wu B, Ju X. et al. MD2 blockade prevents modified LDL-induced retinal injury in diabetes by suppressing NADPH oxidase-4 interaction with Toll-like receptor-4. Exp Mol Med. 2021;53:681–94. https://doi.org/10.1038/s12276-021-00607-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aksöz BE, Ertan R. Chemical and structural properties of chalcones I. FABAD. J Pharm Sci. 2011;36:223–42.

Google Scholar 

West-Nielsen M, Dominiak PM, Wozniak K, Hansen PE.Strong intramolecular hydrogen bonding involving nitro- and acetyl groups. Deuterium isotope effects on chemical shifts. J Mol Struct. 2006;78:81–91. https://doi.org/10.1016/j.molstruc.2005.12.03.

Article  Google Scholar 

Pajak J, Maes G, De Borggraeve WM, Boens N, Filarowski A. Matrix-isolation FT-IR and theoretical investigation of the competitive intramolecular hydrogen bonding in 5-methyl-3-nitro-2-hydroxyacetophenone. J Mol Struct. 2008;880:86–96. https://doi.org/10.1016/j.molstruc.2007.12.019.

Article  CAS  Google Scholar 

Hansen E, Spanget-Larsen J. NMR and IR investigations of strong intramolecular hydrogen bonds. Molecules. 2017;22:552. https://doi.org/10.3390/molecules22040552.

Article  CAS  PubMed Central  Google Scholar 

Sobczyk L, Grabowski S, Krygowski TM. Interrelation between H-bond and Pi-electron delocalization. Chem Rev. 2005;105:3513–60. https://doi.org/10.1021/cr030083c.

Article  CAS  PubMed  Google Scholar 

Kumar R, Karthick T, Tandon P, Agarwal P, Menezes AP, Jayarama A. Structural and vibrational characteristics of a non-linear optical material 3-(4-nitrophenyl)-1-(pyridine-3-yl) prop-2-en-1-one probed by quantum chemical computation and spectroscopic techniques. J Mol Struct. 2018;1164:180–90. https://doi.org/10.1016/j.molstruc.2018.03.06.

Article  CAS  Google Scholar 

Desiraju GR, Steiner T. In the Weak Hydrogen Bond. International Union of Crystallography. New York: Oxford University Press; 2006. p. 15–16.

Google Scholar 

Rocha S, Sousa A, Ribeiro D, Correia CM, Silva VLM, Santos CMM. et al. A study towards drug discovery for the management of type 2 diabetes mellitus through inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by chalcone derivatives. Food Funct. 2019;10:5510–20. https://doi.org/10.1039/c9fo01298b.

Article  CAS  PubMed  Google Scholar 

Brayer GD, Luo Y, Withers SG. The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci. 1995;4:1730–42. https://doi.org/10.1002/pro.5560040908.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosak C, Mertes G. Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes Metab Syndr Obes. 2012;5:357–67. https://doi.org/10.2147/DMSO.S28340.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simone MI, Wood A, Campkin D, Kiefel MJ, Houston TA. Recent results from non-basic glycosidase inhibitors: How structural diversity can inform general strategies for improving inhibition potency. Eur J Med Chem. 2022;235:114282. https://doi.org/10.1016/j.ejmech.2022.114282.

Article  CAS  PubMed  Google Scholar 

Bischoff H. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Invest Med. 1995;18:303–11.

CAS  PubMed  Google Scholar 

Pili R, Chang J, Partis RA, Mueller RA, Chrest FJ, Passaniti A. The α-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res. 1995;55:2920–6.

CAS  PubMed  Google Scholar 

Atsumi S, Nosaka C, Ochi Y, Linuma H, Umezawa K. Inhibition of experimental metastasis by an α-glucosidase inhibitor, 1,6-epi-cyclophellitol. Cancer Res. 1993;53:4896–4899.

CAS  PubMed  Google Scholar 

Gamblin DP, Scanlan EM, Davis BG. Glycoprotein synthesis: An update. Chem Rev. 2009;109:131–163. https://doi.org/10.1002/chin.200919254.

Article  CAS  PubMed  Google Scholar 

Rawlings AJ, Lomas H, Pilling AW, Lee MJ-R, Alonzi DS, Rountree JSS, et al. Synthesis and biological characterisation of novel N-alkyl-deoxynojirimycin α-glucosidase inhibitors. ChemBioChem. 2009;10:1101–1105.

留言 (0)

沒有登入
gif