Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions

McCray V. Toledo's medical college reaches golden milestone. In: The Blade, 2014. https://www.toledoblade.com/Education/2014/05/25/Toledo-s-medical-college-reaches-golden-milestone.html.

Saffran M. Activation of ACTH release by neurohypophysial peptides. Can J Biochem Physiol. 1959;37(2):319–29. PMID: 13618788.

Saffran M, Schally AV. The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol. 1955;33(3):408–15. PMID: 14364332.

Saffran M, Schally AV. Effect of histamine, hog vasopressin, and corticotropin-releasing factor (CRF) on ACTH release in vitro. Proc Soc Exp Biol Med. 1956;92(3):636–7. PMID: 13359490.

Saffran M, Schally AV, Benfey BG. Stimulation of the release of corticotropin from the adenohypophysis by a neurohypophysial factor. Endocrinology. 1955;57(4):439–44. PMID: 13261946.

Saffran M, Vogt M. Depletion of pituitary corticotrophin by reserpine and by a nitrogen mustard. Br J Pharmacol Chemother. 1960;15:165–9. PMID: 14440746 PMC: PMC1481994.

Leighton RF, et al. The Toledo exercise and diet study. Results at 26 weeks. Arch Intern Med. 1990;150(5):1016–20. PMID: 2184789.

Saffran M. Is insulin a factor in the genesis of the vascular complications of diabetes. Trends Endocrinol Metab. 1989;1(2):56–9. PMID: 18411090.

Saffran M. Where the hormones, there moan I. Steroids. 1991;56(6):298–310. PMID: 1926225.

Saffran M. Banting and Best and those who went before. Hosp Pract (Off Ed). 1992;27(5):123–6, 129–32. PMID: 1577882.

Saffran M, et al. Oral insulin in diabetic dogs. J Endocrinol. 1991;131(2):267–78. PMID: 1744572.

Cheng LL, et al. Design of potent and selective agonists for the human vasopressin V1b receptor based on modifications of [deamino-cys1]arginine vasopressin at position 4. J Med Chem. 2004;47(9):2375–88. PMID: 15084136.

Kruszynski M, et al. Invertebrate neuropeptides resembling vasotocin and some analogues: synthesis and pharmacological properties. Experientia. 1990;46(7):771–3. PMID: 2373207.

Lammek B, et al. 2-O-alkyltyrosine derivatives of 1-deamino-arginine-vasopressin: highly specific and potent antidiuretic agonists. J Med Chem. 1989;32(1):244–7. PMID: 2909737.

Manning M. Impact of the Merrifield solid phase method on the design and synthesis of selective agonists and antagonists of oxytocin and vasopressin: a historical perspective. Biopolymers. 2008;90(3):203–12. PMID: 17610261.

Manning M, et al. Novel approach to the design of synthetic radioiodinated linear V1A receptor antagonists of vasopressin. Int J Pept Protein Res. 1992;40(3–4):261–7. PMID: 1478783.

Manning M, Chan WY, Sawyer WH. Design of cyclic and linear peptide antagonists of vasopressin and oxytocin: current status and future directions. Regul Pept. 1993;45(1–2):279–83. PMID: 8511357.

Manning M, et al. Effects of a D-Cys6/L-Cys6 interchange in nonselective and selective vasopressin and oxytocin antagonists. J Med Chem. 1995;38(10):1762–9. PMID: 7752199.

Manning M, et al. Advances in the design of selective antagonists, potential tocolytics, and radioiodinated ligands for oxytocin receptors. Adv Exp Med Biol. 1995;395:559–83. PMID: 8714021.

Manning M, et al. An exploration of the effects of L- and D-tetrahydroisoquinoline-3-carboxylic acid substitutions at positions 2, 3 and 7 in cyclic and linear antagonists of vasopressin and oxytocin and at position 3 in arginine vasopressin. J Pept Sci. 1995;1(1):66–79. PMID: 9222985.

Manning M, et al. Position three in vasopressin antagonist tolerates conformationally restricted and aromatic amino acid substitutions: a striking contrast with vasopressin agonists. J Pept Sci. 1997;3(1):31–46. PMID: 9230469.

Manning M, et al. Design of peptide oxytocin antagonists with strikingly higher affinities and selectivities for the human oxytocin receptor than atosiban. J Pept Sci. 2005;11(10):593–608. PMID: 15880385.

Manning M, et al. Novel linear antagonists of the antidiuretic (V2) and vasopressor (V1) responses to vasopressin. Int J Pept Protein Res. 1988;32(6):455–67. PMID: 3246475.

Manning M, et al. Solid-phase synthesis of 16 potent (selective and nonselective) in vivo antagonists of oxytocin. J Med Chem. 1989;32(2):382–91. PMID: 2913298.

Manning M, et al. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol, 2012. 24(4):609–28. PMID: 22375852 PMC: PMC3490377.

Manning M, et al. C-terminal deletions in agonistic and antagonistic analogues of vasopressin that improve their specificities for antidiuretic (V2) and vasopressor (V1) receptors. J Med Chem. 1987;30(12):2245–52. PMID: 2960812.

Manning M, et al. Design and synthesis of highly selective in vitro and in vivo uterine receptor antagonists of oxytocin: comparisons with Atosiban. Int J Pept Protein Res. 1995;46(3–4):244–52. PMID: 8537178.

Manning M, et al. Potent V2/V1a vasopressin antagonists with C-terminal ethylenediamine-linked retro-amino acids. J Med Chem. 1992;35(21):3895–904. PMID: 1433200.

Manning M, et al. No requirements of cyclic conformation of antagonists in binding to vasopressin receptors. Nature. 1987;329(6142):839–40. PMID: 2959865.

Manning M, Sawyer WH. Discovery, development, and some uses of vasopressin and oxytocin antagonists. J Lab Clin Med. 1989;114(6):617–32. PMID: 2687422.

Manning M, Sawyer WH. Design, synthesis and some uses of receptor-specific agonists and antagonists of vasopressin and oxytocin. J Recept Res. 1993;13(1–4):195–214. PMID: 8383753.

Manning M, et al. Synthesis and some pharmacological properties of potent and selective antagonists of the vasopressor (V1-receptor) response to arginine-vasopressin. J Med Chem. 1992;35(2):382–8. PMID: 1531076.

Manning M, et al. Receptor-specific antagonists of vasopressin and oxytocin. A current perspective. Ann NY Acad Sci. 1993;689:219–32. PMID: 8396867.

Manning M, et al. Synthesis and structure-activity investigation of novel vasopressin hypotensive peptide agonists. J Pept Sci. 1999;5(11):472–90. PMID: 10587312.

Manning M, et al. Discovery and design of novel vasopressin hypotensive peptide agonists. J Recept Signal Transduct Res. 1999;19(1–4):631–44. PMID: 10071789.

Manning M, et al. Design of oxytocin antagonists, which are more selective than atosiban. J Pept Sci. 2001;7(9):449–65. PMID: 11587184.

Manning M, et al. Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. Prog Brain Res. 2008;170:473–512. PMID: 18655903.

Manning M, et al. Design of potent and selective linear antagonists of vasopressor (V1-receptor) responses to vasopressin. J Med Chem. 1990;33(11):3079–86. PMID: 2231609.

Stoev S, et al. Design and synthesis of potent, highly selective vasopressin hypotensive agonists. J Pept Sci. 2006;12(9):592–604. PMID: 16625682.

Stoev S, et al. An investigation of position 3 in arginine vasopressin with aliphatic, aromatic, conformationally-restricted, polar and charged amino acids. J Pept Sci. 1999;5(3):141–53. PMID: 10323558.

Askari A, Kakar SS, Huang WH. Ligand binding sites of the ouabain-complexed (Na+ + K+)-ATPase. J Biol Chem. 1988;263(1):235–42. PMID: 2826440.

Kakar SS, Huang WH, Askari A. Properties of the Na+, K+, and ATP binding sites of the ouabain-complexed (Na+ + K+)-ATPase: implications for the mechanism of ouabain action. Prog Clin Biol Res. 1988;268A:211–8. PMID: 2843864.

Liu J, et al. Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J Biol Chem. 2000;275(36):27838–44. PMID: 10874029.

Haas M, Askari A, Xie Z. Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J Biol Chem. 2000;275(36):27832–7. PMID: 10874030.

Kometiani P, et al. Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases.J Biol Chem, 1998. 273(24):15249–56. PMID: 9614140.

Liu L, et al. Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase. Am J Physiol Cell Physiol. 2003;284(6):C1550–60. PMID: 12606314.

Mohammadi K, et al. Role of protein kinase C in the signal pathways that link Na+/K+-ATPase to ERK1/2. J Biol Chem. 2001;276(45):42050–6. PMID: 11562372.

Mohammadi K, et al. Positive inotropic effect of ouabain on isolated heart is accompanied by activation of signal pathways that link Na+/K+-ATPase to ERK1/2. J Cardiovasc Pharmacol. 2003;41(4):609–14. PMID: 12658063.

• Xie Z, Askari A. Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem, 2002;269(10):2434–9. PMID: 12027880. This article is signficant because it describes the signaling pathways that the Na+/K+-ATPase plasma membrane enzyme uses to communicate with intracellular organelles outside of its role as an energy tranducing ion pump.

Askari A. The other functions of the sodium pump. Cell Calcium. 2019;84: 102105. PMID: 31733624.

Brecher AS, et al. Regulation of adrenal renin messenger ribonucleic acid by dietary sodium chloride. Endocrinology. 1989;124(6):2907–13. PMID: 2470583.

Gupta P, Franco-Saenz R, Mulrow PJ. Regulation of the adrenal renin angiotensin system in cultured bovine zona glomerulosa cells: effect of catecholamines. Endocrinology. 1992;130(4):2129–34. PMID: 1312445.

Mulrow, P.J., Adrenal renin: a possible local regulator of aldosterone production. Yale J Biol Med, 1989. 62(5):503–10. PMID: 2697984 PMC: PMC2589164.

Mulrow PJ. Adrenal renin: regulation and function. Front Neuroendocrinol. 1992;13(1):47–60. PMID: 1468598.

Mulrow PJ, et al. Adrenal renin: a possible local hormonal regulator of aldosterone production. Cardiovasc Drugs Ther. 1988;2(4):463–71. PMID: 3154627.

Tokita Y, et al. Adrenal renin is released into the circulation of the hypertensive transgenic rat TGR (mRen-2)27. Trans Assoc Am Physicians. 1992;105:123–32. PMID: 1308989.

Figueroa O, et al. Changes in cholesterol levels after coronary artery bypass surgery. Am J Med Sci. 1992;303(2):73–7. PMID: 1539612.

Franco-Saenz R, et al. Effect of atrial natriuretic factor on renin and aldosterone. J Cardiovasc Pharmacol. 1989;13(Suppl 6):S31–5. PMID: 2473345.

Franco-Saenz R, Harper D, Mulrow PJ. Effect of posture on the plasma levels of atrial natriuretic factor. Clin Exp Hypertens A. 1989;11(2):337–47. PMID: 2650932.

Franco-Saenz R, Somani P, Mulrow PJ. Effect of atrial natriuretic peptide (8–33-Met ANP) in patients with hypertension. Am J Hypertens. 1992;5(5 Pt 1):266–75. PMID: 1533767.

Gupta P, et al. Transforming growth factor-beta 1 inhibits aldosterone and stimulates adrenal renin in cultured bovine zona glomerulosa cells. Endocrinology. 1992;131(2):631–6. PMID: 1322277.

Gupta P, Franco-Saenz R, Mulrow PJ. Transforming growth factor-beta 1 inhibits aldosterone biosynthesis in cultured bovine zona glomerulosa cells. Endocrinology. 1993;132(3):1184–8. PMID: 8440178.

Lotshaw DP, Franco-Saenz R, Mulrow PJ. Atrial natriuretic peptide inhibition of calcium ionophore A23187-stimulated aldosterone secretion in rat adrenal glomerulosa cells. Endocrinology. 1991;129(5):2305–10. PMID: 1657569.

Lotshaw DP, Franco-Saenz R, Mulrow PJ. Guanabenz-induced inhibition of aldosterone secretion from isolated rat adrenal glomerulosa cells. Am J Med Sci. 1991;301(1):15–20. PMID: 1847275.

Mulrow PJ. Sabbatical leave: an important mechanism for revitalizing faculty. J Lab Clin Med. 1989;113(5):537–40. PMID: 2715679.

Mulrow PJ. Production of renin by adrenal glomerulosa cells. Trans Am Clin Climatol Assoc. 1989;100:126–31. PMID: 3077571 PMC: PMC2376478.

Mulrow PJ. The intrarenal renin-angiotensin system. Curr Opin Nephrol Hypertens. 1993;2(1):41–4. PMID: 7922165.

Mulrow PJ, et al. Inhibition of aldosterone secretion by atrial natriuretic peptide. Ann N Y Acad Sci. 1987;512:438–48. PMID: 2831784.

Mulrow PJ, et al. Inhibitors of aldosterone secretion. J Steroid Biochem. 1987;27(4–6):941–6. PMID: 2826913.

Oda H, et al. Local generation of angiotensin II as a mechanism of aldosterone secretion in rat adrenal capsules. Proc Soc Exp Biol Med. 1991;196(2):175–7. PMID: 1846675.

Shier DN, et al. Production of renin, angiotensin II, and aldosterone by adrenal explant cultures: response to potassium and converting enzyme inhibition. Endocrinology. 1989;125(1):486–91. PMID: 2544410.

Takagi M, et al. Effect of atrial natriuretic peptide on renin release in a superfusion system of kidney slices and dispersed juxtaglomerular cells. Endocrinology. 1988;122(4):1437–42. PMID: 2831030.

Takagi M, et al. Effects of dibutyryl adenosine 3′,5′-monophosphate, angiotensin II, and atrial natriuretic factor on phosphorylation of a 17,600-dalton protein in adrenal glomerulosa cells. Endocrinology. 1988;123(5):2419–23. PMID: 2844512.

Takagi M, et al. Effect of atrial natriuretic factor on calcium fluxes in adrenal glomerulosa cells. Hypertension. 1988;11(5):433–9. PMID: 2966768.

Tokita Y, et al. Effects of nephrectomy and adrenalectomy on the renin-angiotensin system of transgenic rats TGR(mRen2)27. Endocrinology. 1994;134(1):253–7. PMID: 8275941.

Wang Y, et al. Regulation of renin gene expression in rat adrenal zona glomerulosa cells. Hypertension. 1992;20(6):776–81. PMID: 1333446.

Yamaguchi T, Franco-Saenz R, Mulrow PJ. Effect of angiotensin II on renin production by rat adrenal glomerulosa cells in culture. Hypertension. 1992;19(3):263–9. PMID: 1312512.

Yamaguchi T, et al. Role of the adrenal renin-angiotensin system on adrenocorticotropic hormone- and potassium-stimulated aldosterone production by rat adrenal glomerulosa cells in monolayer culture. Hypertension. 1990;16(6):635–41. PMID: 2174021.

Yamaguchi T, et al. Zonal distribution and regulation of adrenal renin in a transgenic model of hypertension in the rat. Endocrinology. 1992;131(4):1955–62. PMID: 1396339.

Izumi Y, Franco-Saenz R, Mulrow PJ. Effects of prostaglandin synthesis inhibitors on the renin-angiotensin system and renal function. Hypertension. 1985;7(5):791–6. PMID: 3861577.

Suzuki S, et al. Urinary prostaglandin E2 excretion in chronic renal disease. Prostaglandins Med. 1980;4(5):377–82. PMID: 7403335.

Dheenan S, Henrich WL. Preventing dialysis hypotension: a comparison of usual protective maneuvers. Kidney Int. 2001;59(3):1175–81. PMID: 11231376.

Dheenan S, et al. Effect of sertraline hydrochloride on dialysis hypotension. Am J Kidney Dis. 1998;31(4):624–30. PMID: 9531178.

Franco-Saenz R, et al. Regulation of the genes for 11beta-hydroxysteroid dehydrogenase type 1 and type 2 in the kidney of the Dahl rat. J Hypertens. 1999;17(8):1089–93. PMID: 10466463.

Henrich WL. Approach to volume control, cardiac preservation, and blood pressure control in the pre-end-stage renal disease patient. J Am Soc Nephrol. 1998;9(12 Suppl):S63–5. PMID: 11443770.

Henrich WL. Analgesic nephropathy. Trans Am Clin Climatol Assoc. 1998;109:147–58; discussion 158–9. PMID: 9601134 PMC: PMC2194329.

Henrich WL. Renal artery disease in the elderly. Geriatr Nephrol Urol. 1999;9(2):81–6. PMID: 10518251.

Henrich WL, et al. Analgesics and the kidney: summary and recommendations to the Scientific Advisory Board of the National Kidney Foundation from an Ad Hoc Committee of the National Kidney Foundation. Am J Kidney Dis. 1996;27(1):162–5. PMID: 8546133.

Venkatesan J, Henrich WL. Anemia, hypertension, and myocardial dysfunction in end-stage renal disease. Semin Nephrol. 1997;17(4):257–69. PMID: 9241712.

Venkatesan J, Henrich WL. Cardiac disease in chronic uremia: management. Adv Ren Replace Ther. 1997;4(3):249–66. PMID: 9239429.

Barbato JC, et al. Rapid effects of aldosterone and spironolactone in the isolated working rat heart. Hypertension. 2002;40(2):130–5. PMID: 12154102.

Article  CAS  PubMed  Google Scholar 

Barbato JC, et al. Mechanisms for aldosterone and spironolactone-induced positive inotropic actions in the rat heart. Hypertension. 2004;44(5):751–7. PMID: 15466666.

Article  CAS  PubMed  Google Scholar 

•• Cooper CJ, et al. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med. 2014;370(1):13–22. PMID: 24245566 PMC: PMC4815927. This randomized, control study compared the outcomes for medical therapy alone with medical therapy plus renal-artery stenting in patients with atherosclerotic renal-artery stenosis and elevated blood pressure, chronic kidney disease, or both.

Drummond CA, et al. Reduction of Na/K-ATPase affects cardiac remodeling and increases c-kit cell abundance in partial nephrectomized mice. Am J Physiol Heart Circ Physiol. 2014;306(12):H1631–43. PMID: 24748592 PMC: PMC4059984.

Elkareh J, et al. Marinobufagenin stimulates fibroblast collagen production and causes fibrosis in experimental uremic cardiomyopathy. Hypertension. 2007;49(1):215–24. PMID: 17145984.

El-Okdi N, et al. Effects of cardiotonic steroids on dermal collagen synthesis and wound healing. J Appl Physiol 1985;2008.105(1):30–6. PMID: 18483172 PMC: PMC2494826.

Fedorova LV, et al. Peroxisome proliferator-activated receptor delta agonist, HPP593, prevents renal necrosis under chronic ischemia. PLoS One. 2013;8(5):e64436. PMID: 23691217 PMC: PMC3654981.

Gupta S, et al. Ouabain and insulin induce sodium pump endocytosis in renal epithelium. Hypertension. 2012;59(3):665–72. PMID: 22311908 PMC: PMC3336087.

Haller ST, et al. Passive immunization against marinobufagenin attenuates renal fibrosis and improves renal function in experimental renal disease. Am J Hypertens. 2014;27(4):603–9. PMID: 24014658 PMC: PMC3958603.

Haller ST, et al. Effect of CD40 and sCD40L on renal function and survival in patients with renal artery stenosis. Hypertension, 2013;61(4):894–900. PMID: 23399713 PMC: PMC3783956.

Haller ST, et al.k Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am J Hypertens. 2012;25(6):690–6. PMID: 22378033 PMC: PMC3355226.

Joe B, Shapiro JI. Molecular mechanisms of experimental salt-sensitive hypertension. J Am Heart Assoc. 2012;1(3):e002121. PMID: 23130148 PMC: PMC3487327.

Kennedy D, et al. Effect of chronic renal failure on cardiac contractile function, calcium cycling, and gene expression of proteins important for calcium homeostasis in the rat. J Am Soc Nephrol. 2003;14(1):90–7. PMID: 12506141.

Article  CAS  PubMed  Google Scholar 

Kennedy DJ, et al. Partial nephrectomy as a model for uremic cardiomyopathy in the mouse. Am J Physiol Renal Physiol. 2008;294(2):F450–4. PMID: 18032546 PMC: PMC2742580.

Kennedy DJ, et al. Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension. 2006;47(3):488–95. PMID: 16446397.

Article  CAS  PubMed  Google Scholar 

Krol DM, et al. A mobile medical care approach targeting underserved populations in post-Hurricane Katrina Mississippi. J Health Care Poor Underserved. 2007;18(2):331–40. PMID: 17483561.

Article  PubMed  Google Scholar 

Liu J, et al. Reactive oxygen species modulation of Na/K-ATPase regulates fibrosis and renal proximal tubular sodium handling. Int J Nephrol. 2012;381320. PMID: 22518311 PMC: PMC3299271.

Liu J, et al. Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt-sensitive hypertension. J Biol Chem. 2011;286(26):22806–13. PMID: 21555512 PMC: PMC3123048.

Murphy TP, et al. Roll-in experience from the Cardiovascular Outcomes with Renal Atherosclerotic Lesions (CORAL) study. J Vasc Interv Radiol. 2014;25(4):511–20. PMID: 24325931 PMC: PMC4815916.

Murphy TP, et al. Renal artery stent outcomes: effect of baseline blood pressure, stenosis severity, and translesion pressure gradient. J Am Coll Cardiol. 2015;66(22):2487–94. PMID: 26653621 PMC: PMC4819253.

Oweis S, et al. Cardiac glycoside downregulates NHE3 activity and expression in LLC-PK1 cells. Am J Physiol Renal Physiol. 2006;290(5):F997-1008. PMID: 16352745.

Article  CAS  PubMed  Google Scholar 

Priyadarshi S, et al. Effect of green tea extract on cardiac hypertrophy following 5/6 nephrectomy in the rat. Kidney Int. 2003;63(5):1785–90. PMID: 12675854.

Article  CAS  PubMed  Google Scholar 

Reddy BK, et al. Compliance with antihypertensive therapy after renal artery stenting. Biol Res Nurs. 2003;5(1):37–46. PMID: 12886669.

Article  PubMed  Google Scholar 

Sodhi K, et al. PPARdelta binding to heme oxygenase 1 promoter prevents angiotensin II-induced adipocyte dysfunction in Goldblatt hypertensive rats. Int J Obes (Lond). 2014;38(3):456–65. PMID: 23779049 PMC: PMC3950586.

Tian J, et al. Renal ischemia regulates marinobufagenin release in humans. Hypertension. 2015;56(5):914–9. PMID: 20823380 PMC: PMC2959137.

Tian J, et al. Spironolactone attenuates experimental uremic cardiomyopathy by antagonizing marinobufagenin. Hypertension. 2009;54(6):1313–20. PMID: 19884563 PMC: PMC2783263.

Tzamaloukas AH, et al. Management of severe hyponatremia: infusion of hypertonic saline and desmopressin or infusion of vasopressin inhibitors? Am J Med Sci. 2014;348(5):432–9. PMID: 25247759 PMC: PMC4206391.

Xie JX, Shapiro AP, Shapiro JI. The trade-off between dietary salt and cardiovascular disease; a role for Na/K-ATPase signaling. Front Endocrinol (Lausanne). 2014;5:97. PMID: 25101054 PMC: PMC4101451.

Yan Y, et al. Involvement of reactive oxygen species in a feed-forward mechanism of Na/K-ATPase-mediated signaling transduction. J Biol Chem. 2013;288(47):34249–34258. PMID: 24121502 PMC: PMC3837165.

Whelton PK, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2018;138(17):e426–83. PMID: 30354655.

PubMed  Google Scholar 

Rapp JP. Genetic analysis of inherited hypertension in the rat. Physiol Rev. 2000;80(1):135–72. PMID: 10617767.

Article  CAS  PubMed  Google Scholar 

•• Padmanabhan S, Joe B. Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans. Physiol Rev. 2017;97(4):1469–1528. PMID: 28931564 PMC: PMC6347103. This review is an extensive compilation of more recent discoveries of the early 21st century in the field of genetics, epigenetics and microbiotal contributions.

Joe B. Dr Lewis Kitchener Dahl, the Dahl rats, and the “inconvenient truth” about the genetics of hypertension. Hypertension. 2015;65(5):963–9. PMID: 25646295 PMC: PMC4393342.

Dahl LK, Heine M, Tassinari L. Effects of chronia excess salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med. 1962;115:1173–90. PMID: 13883089 PMC: PMC2137393.

Dahl LK, Heine M, Tassinari L. Effects of chronic excess salt ingestion. Vascular reactivity in two strains of rats with opposite genetic susceptibility to experimental hypertension. Circulation. 1964;30:SUPPL 2:11–22. PMID: 14187059.

Dahl LK, Knudsen KD, Iwai J. Genetic influence of the kidney in hypertension-prone rats. Circ Res. 1970;27:Suppl 2:277+. PMID: 5506146.

Dahl LK, Schackow E. Effects of chronic excess salt ingestion: experimental hypertension in the rat. Can Med Assoc J. 1964;90:155–60. PMID: 14111710 PMC: PMC1922502.

Iwai J, Knudsen KD, Dahl LK. Genetic influence on the renin-angiotensin system. Evidence for a renin inhibitor in hypertension-prone rats. J Exp Med. 1970;131(3):543–57. PMID: 4312940 PMC: PMC2138815.

Knudsen KD, et al. Genetic influence on the development of renoprival hypertension in parabiotic rats. Evidence that a humoral hypertensinogenic factor is produced in kidney tissue of hypertension-prone rats. J Exp Med. 1969;130(6):1353–65. PMID: 5352784 PMC: PMC2138691.

Wolf G, Dahl LK, Miller NE. Voluntary sodium chloride intake of two strains of rats with opposite genetic susceptibility to experimental hypertension. Proc Soc Exp Biol Med. 1965;120(2):301–5. PMID: 5860031.

Article  CAS  PubMed  Google Scholar 

Rapp JP, Dene H. Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension. 1985;7(3 Pt 1):340–9. PMID: 3997219.

Article  CAS  PubMed  Google Scholar 

Rapp JP, Joe B. Use of contiguous congenic strains in analyzing compound QTLs. Physiol Genomics. 2012;44(2):117–20. PMID: 22108210 PMC: PMC3289116.

Cheng X, et al. Genetic predisposition for increased red blood cell distribution width is an early risk factor for cardiovascular and renal comorbidities. Dis Model Mech. 2020;13(5). PMID: 32238420 PMC: PMC7325433.

Cheng X, et al. Pleiotropic effect of a high resolution mapped blood pressure QTL on tumorigenesis. PLoS One. 2016;11(4):e0153519. PMID: 27073989 PMC: PMC4830557.

Gopalakrishnan K, et al. Defining a rat blood pressure quantitative trait locus to a <81.8 kb congenic segment: comprehensive sequencing and renal transcriptome analysis. Physiol Genomics. 2010;42A(2):153–61. PMID: 20716646 PMC: PMC2957796.

Kumarasamy S, et al. Targeted disruption of regulated endocrine-specific protein ( Resp18) in Dahl SS/Mcw rats aggravate

留言 (0)

沒有登入
gif