Nuclear Inhibitor of Protein Phosphatase 1 (NIPP1) Regulates CNS Tau Phosphorylation and Myelination During Development

Trinkle-Mulcahy L, Ajuh P, Prescott A, Claverie-Martin F, Cohen S, Lamond AI, Cohen P (1999) Nuclear organisation of NIPP1, a regulatory subunit of protein phosphatase 1 that associates with pre-mRNA splicing factors. J Cell Sci 112(Pt 2):157–168

Article  CAS  PubMed  Google Scholar 

Winkler, C., R. Rouget, D. Wu, M. Beullens, A. Van Eynde, and M (2018) Bollen, Overexpression of PP1-NIPP1 limits the capacity of cells to repair DNA double-strand breaks. J Cell Sci 131(13).

Ferreira M, Verbinnen I, Fardilha M, Van Eynde A, Bollen M (2018) The deletion of the protein phosphatase 1 regulator NIPP1 in testis causes hyperphosphorylation and degradation of the histone methyltransferase EZH2. J Biol Chem 293(47):18031–18039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin Q, van Eynde A, Beullens M, Roy N, Thiel G, Stalmans W, Bollen M (2003) The protein phosphatase-1 (PP1) regulator, nuclear inhibitor of PP1 (NIPP1), interacts with the polycomb group protein, embryonic ectoderm development (EED), and functions as a transcriptional repressor. J Biol Chem 278(33):30677–30685

Article  CAS  PubMed  Google Scholar 

Minnebo N, Gornemann J, O’Connell N, Van Dessel N, Derua R, Vermunt MW, Page R et al (2013) NIPP1 maintains EZH2 phosphorylation and promoter occupancy at proliferation-related target genes. Nucleic Acids Res 41(2):842–854

Article  CAS  PubMed  Google Scholar 

Van Dessel N, Beke L, Gornemann J, Minnebo N, Beullens M, Tanuma N, Shima H, Van Eynde A, Bollen M (2010) The phosphatase interactor NIPP1 regulates the occupancy of the histone methyltransferase EZH2 at Polycomb targets. Nucleic Acids Res 38(21):7500–7512

Article  PubMed  PubMed Central  Google Scholar 

Van Eynde A, Nuytten M, Dewerchin M, Schoonjans L, Keppens S, Beullens M, Moons L, Carmeliet P, Stalmans W, Bollen M (2004) The nuclear scaffold protein NIPP1 is essential for early embryonic development and cell proliferation. Mol Cell Biol 24(13):5863–5874

Article  PubMed  PubMed Central  Google Scholar 

Boens S, Verbinnen I, Verhulst S, Szeker K, Ferreira M, Gevaert T, Baes M, Roskams T et al (2016) Brief report: the deletion of the phosphatase regulator NIPP1 causes progenitor cell expansion in the adult liver. Stem Cells 34(8):2256–2262

Article  CAS  PubMed  Google Scholar 

Ferreira M, Boens S, Winkler C, Szeker K, Verbinnen I, Van Eynde A, Fardilha M, Bollen M (2017) The protein phosphatase 1 regulator NIPP1 is essential for mammalian spermatogenesis. Sci Rep 7(1):13364

Article  PubMed  PubMed Central  Google Scholar 

Verbinnen I, Jonkhout M, Liakath-Ali K, Szeker K, Ferreira M, Boens S, Rouget R, Nikolic M et al (2020) Phosphatase regulator NIPP1 restrains chemokine-driven skin inflammation. J Invest Dermatol 140(8):1576–1588

Article  CAS  PubMed  PubMed Central  Google Scholar 

Novoyatleva T, Heinrich B, Tang Y, Benderska N, Butchbach ME, Lorson CL, Lorson MA, Ben-Dov C et al (2008) Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. Hum Mol Genet 17(1):52–70

Article  CAS  PubMed  Google Scholar 

Welden JR, van Doorn J, Nelson PT, Stamm S (2018) The human MAPT locus generates circular RNAs. Biochim Biophys Acta Mol Basis Dis 1864(9):2753–2760

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21

Article  PubMed  Google Scholar 

Braithwaite SP, Stock JB, Lombroso PJ, Nairn AC (2012) Protein phosphatases and Alzheimer’s disease. Prog Mol Biol Transl Sci 106:343–379

Article  CAS  PubMed  PubMed Central  Google Scholar 

Readhead C, Hood L (1990) The dysmyelinating mouse mutations shiverer (shi) and myelin deficient (shimld). Behav Genet 20(2):213–234

Article  CAS  PubMed  Google Scholar 

Hou H, Sun L, Siddoway BA, Petralia RS, Yang H, Gu H, Nairn AC, Xia H (2013) Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5. J Cell Biol 203(3):521–535

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayoral SR, Etxeberria A, Shen YA, Chan JR (2018) Initiation of CNS myelination in the optic nerve is dependent on axon caliber. Cell Rep 25(3):544–550 (e3)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang H, Hou H, Pahng A, Gu H, Nairn AC, Tang YP, Colombo PJ, Xia H (2015) Protein phosphatase-1 inhibitor-2 is a novel memory suppressor. J Neurosci 35(45):15082–15087

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dickson DW, Kouri N, Murray ME, Josephs KA (2011) Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci 45(3):384–389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, Mobius W, Goetze B et al (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91(1):119–132

Article  CAS  PubMed  PubMed Central  Google Scholar 

McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD (2014) Motor skill learning requires active central myelination. Science 346(6207):318–322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monje M (2018) Myelin plasticity and nervous system function. Annu Rev Neurosci 41:61–76

Article  CAS  PubMed  Google Scholar 

Birey F, Kloc M, Chavali M, Hussein I, Wilson M, Christoffel DJ, Chen T, Frohman MA et al (2015) Genetic and stress-induced loss of NG2 glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2. Neuron 88(5):941–956

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raabe, F.J., L. Slapakova, M.J. Rossner, L. Cantuti-Castelvetri, M. Simons, P.G. Falkai, and A. Schmitt (2019) Oligodendrocytes as a new therapeutic target in schizophrenia: from histopathological findings to neuron-oligodendrocyte interaction. Cells, 8(12).

Lee S, Leach MK, Redmond SA, Chong SY, Mellon SH, Tuck SJ, Feng ZQ, Corey JM, Chan JR (2012) A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 9(9):917–922

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonetto G, Kamen Y, Evans KA, Karadottir RT (2020) Unraveling myelin plasticity Front Cell Neurosci 14:156

Article  CAS  PubMed  Google Scholar 

Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, Lubetzki C (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci U S A 93(18):9887–9892

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304

Article  PubMed  PubMed Central  Google Scholar 

Mitew S, Gobius I, Fenlon LR, McDougall SJ, Hawkes D, Xing YL, Bujalka H, Gundlach AL et al (2018) Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat Commun 9(1):306

Article  PubMed  PubMed Central  Google Scholar 

Goebbels S, Wieser GL, Pieper A, Spitzer S, Weege B, Yan K, Edgar JM, Yagensky O et al (2017) A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci 20(1):10–15

Article  CAS  PubMed  Google Scholar 

Siddoway B, Hou H, Yang J, Sun L, Yang H, Wang GY, Xia H (2014) Potassium channel Kv2.1 is regulated through protein phosphatase-1 in response to increases in synaptic activity. Neurosci Lett 583:142–7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrager P, Youngman M (2017) Preferential conduction block of myelinated axons by nitric oxide. J Neurosci Res 95(7):1402–1414

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif