Neuroprotective Effect of Exogenous Galectin-1 in Status Epilepticus

Alkadhi KA (2019) Cellular and molecular differences between area CA1 and the dentate gyrus of the hippocampus. Mol Neurobiol. https://doi.org/10.1007/s12035-019-1541-2

Article  PubMed  Google Scholar 

Lothman EW, Bertram EH, Stringer JL (1991) Functional anatomy of hippocampal seizures. Prog Neurobiol 37:1–82. https://doi.org/10.1016/0301-0082(91)90011-O

Article  CAS  PubMed  Google Scholar 

Upadhya D, Hattiangady B, Castro OW et al (2019) Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. Proc Natl Acad Sci 116:287–296. https://doi.org/10.1073/pnas.1814185115

Article  CAS  PubMed  Google Scholar 

Wu D, Chang F, Peng D et al (2020) The morphological characteristics of hippocampus and thalamus in mesial temporal lobe epilepsy. BMC Neurol 20:235. https://doi.org/10.1186/s12883-020-01817-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lowenstein DH (1999) Status epilepticus: an overview of the clinical problem. Epilepsia 40 Suppl 1:S3-8; discussion S21-2

Article  CAS  PubMed  Google Scholar 

Sloviter RS (1999) Status epilepticus-induced neuronal injury and network reorganization. Epilepsia 40:34–39. https://doi.org/10.1111/j.1528-1157.1999.tb00876.x

Article  Google Scholar 

Santos VR, Melo IS, Pacheco ALD, Castro OWD (2019) Life and death in the hippocampus: what’s bad? Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2019.106595

Article  PubMed  Google Scholar 

van Liefferinge J, Massie A, Portelli J et al (2013) Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy? Front Cell Neurosci 7:139. https://doi.org/10.3389/fncel.2013.00139

Article  CAS  PubMed  PubMed Central  Google Scholar 

Upadhya D, Kodali M, Gitai D et al (2019) A model of chronic temporal lobe epilepsy presenting constantly rhythmic and robust spontaneous seizures, co-morbidities and hippocampal neuropathology. Aging Dis 10:915–936. https://doi.org/10.14336/AD.2019.0720

Article  PubMed  PubMed Central  Google Scholar 

Sharma AK, Reams RY, Jordan WH et al (2007) Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol 35:984–999. https://doi.org/10.1080/01926230701748305

Article  PubMed  Google Scholar 

Castro OW, Furtado MA, Tilelli CQ et al (2011) Comparative neuroanatomical and temporal characterization of FluoroJade-positive neurodegeneration after status epilepticus induced by systemic and intrahippocampal pilocarpine in Wistar rats. Brain Res 1374:43–55. https://doi.org/10.1016/j.brainres.2010.12.012

Article  CAS  PubMed  Google Scholar 

Furtado MA, Castro OW, del Vecchio F et al (2011) Study of spontaneous recurrent seizures and morphological alterations after status epilepticus induced by intrahippocampal injection of pilocarpine. Epilepsy Behav 20:257–266. https://doi.org/10.1016/j.yebeh.2010.11.024

Article  CAS  PubMed  Google Scholar 

Castro OW, Upadhya D, Kodali M, Shetty AK (2017) Resveratrol for easing status epilepticus induced brain injury, inflammation, epileptogenesis, and cognitive and memory dysfunction—are we there yet? Front Neurol 8:603. https://doi.org/10.3389/fneur.2017.00603

Article  PubMed  PubMed Central  Google Scholar 

Zhu K, Yuan B, Hu M et al (2018) Ablation of aberrant neurogenesis fails to attenuate cognitive deficit of chronically epileptic mice. Epilepsy Res 142:1–8. https://doi.org/10.1016/j.eplepsyres.2018.03.004

Article  PubMed  Google Scholar 

de Melo IS, dos Santos YMO, Pacheco ALD et al (2020) Role of modulation of hippocampal glucose following pilocarpine-induced status epilepticus. Mol Neurobiol. https://doi.org/10.1007/s12035-020-02173-0

Article  PubMed  Google Scholar 

Rondouin G, Lerner-Natoli M, Hashizume A (1987) Wet dog shakes in limbic versus generalized seizures. Exp Neurol 95:500–505. https://doi.org/10.1016/0014-4886(87)90156-7

Article  CAS  PubMed  Google Scholar 

Rodrigues MCA, Rossetti F, Foresti ML et al (2005) Correlation between shaking behaviors and seizure severity in five animal models of convulsive seizures. Epilepsy Behav 6:328–336. https://doi.org/10.1016/j.yebeh.2005.02.005

Article  PubMed  Google Scholar 

Melo IS, Santos YMO, Costa MA et al (2016) Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus. Epilepsy Behav 61:258–268. https://doi.org/10.1016/j.yebeh.2016.05.026

Article  PubMed  Google Scholar 

Manouze H, Bouchatta O, Bennis M et al (2019) Anticonvulsive and neuroprotective effects of aqueous and methanolic extracts of Anacyclus pyrethrum root in kainic acid-induced-status epilepticus in mice. Epilepsy Res 158.https://doi.org/10.1016/j.eplepsyres.2019.106225

Vega-García A, Santana-Gómez CE, Rocha L et al (2019) Magnolia officinalis reduces the long-term effects of the status epilepticus induced by kainic acid in immature rats. Brain Res Bull 149:156–167. https://doi.org/10.1016/j.brainresbull.2019.04.003

Article  CAS  PubMed  Google Scholar 

Mante PK, Adongo DW, Woode E (2017) Anticonvulsant effects of antiaris toxicaria aqueous extract: Investigation using animal models of temporal lobe epilepsy. BMC Res Notes 10.https://doi.org/10.1186/s13104-017-2488-x

Pernot F, Heinrich C, Barbier L et al (2011) Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy. Epilepsia 52:2315–2325. https://doi.org/10.1111/j.1528-1167.2011.03273.x

Article  PubMed  Google Scholar 

Wu XL, Tang YC, Lu QY et al (2015) Astrocytic Cx 43 and Cx 40 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Exp Brain Res 233:1529–1539. https://doi.org/10.1007/s00221-015-4226-8

Article  CAS  PubMed  Google Scholar 

Li R, Ma L, Huang H et al (2016) Altered expression of CXCL13 and CXCR5 in intractable temporal lobe epilepsy patients and pilocarpine-induced epileptic rats. Neurochem Res. https://doi.org/10.1007/s11064-016-2102-y

Article  PubMed  PubMed Central  Google Scholar 

Xu KL, Liu XQ, Yao YL et al (2018) Effect of dexmedetomidine on rats with convulsive status epilepticus and association with activation of cholinergic anti-inflammatory pathway. Biochem Biophys Res Commun 495:421–426. https://doi.org/10.1016/j.bbrc.2017.10.124

Article  CAS  PubMed  Google Scholar 

de Melo IS, Pacheco ALD, dos Santos YMO et al (2021) Modulation of glucose availability and effects of hypo- and hyperglycemia on status epilepticus: what we do not know yet? Mol Neurobiol 58:505–519. https://doi.org/10.1007/s12035-020-02133-8

Article  CAS  PubMed  Google Scholar 

Sedaghat R, Taab Y, Kiasalari Z et al (2017) Berberine ameliorates intrahippocampal kainate-induced status epilepticus and consequent epileptogenic process in the rat: underlying mechanisms. Biomed Pharmacother 87:200–208. https://doi.org/10.1016/j.biopha.2016.12.109

Article  CAS  PubMed  Google Scholar 

Mohd Sairazi NS, Sirajudeen KNS, Muzaimi M, Mummedy S, Asari MA, Sulaiman SA (2018) Tualang honey reduced neuroinflammation and caspase-3 activity in rat brain after kainic acid-induced status epilepticus. Evid Based Complement Alternat Med 2018:7287820. https://doi.org/10.1155/2018/7287820

Article  PubMed  PubMed Central  Google Scholar 

Miskin C, Hasbani DM (2014) Status epilepticus: immunologic and inflammatory mechanisms. Semin Pediatr Neurol 21:221–225. https://doi.org/10.1016/j.spen.2014.09.001

Article  PubMed  Google Scholar 

Jiang J, Yu Y, Kinjo ER et al (2019) Suppressing pro-inflammatory prostaglandin signaling attenuates excitotoxicity-associated neuronal inflammation and injury. Neuropharmacology 149:149–160. https://doi.org/10.1016/j.neuropharm.2019.02.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du Y, Kemper T, Qiu J, Jiang J (2016) Defining the therapeutic time window for suppressing the inflammatory prostaglandin E2 signaling after status epilepticus. Expert Rev Neurother 16:123–130

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rojas A, Ganesh T, Lelutiu N et al (2015) Inhibition of the prostaglandin EP2 receptor is neuroprotective and accelerates functional recovery in a rat model of organophosphorus induced status epilepticus. Neuropharmacology 93:15–27. https://doi.org/10.1016/j.neuropharm.2015.01.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leite JP, Garcia-Cairasco N, Cavalheiro EA (2002) New insights from the use of pilocarpine and kainate models. Epilepsy Res 50:93–103. https://doi.org/10.1016/S0920-1211(02)00072-4

Article  CAS  PubMed  Google Scholar 

Mishra V, Shuai B, Kodali M et al (2016) Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci Rep 5:17807. https://doi.org/10.1038/srep17807

Article  CAS  Google Scholar 

Zenki KC, Kalinine E, Zimmer ER et al (2018) Memantine decreases neuronal degeneration in young rats submitted to LiCl-pilocarpine-induced status epilepticus. Neurotoxicology 66:45–52. https://doi.org/10.1016/j.neuro.2018.03.005

Article  CAS  PubMed  Google Scholar 

Mori MA, Meyer E, Soares LM et al (2017) Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuropsychopharmacol Biol Psychiatry 75:94–105. https://doi.org/10.1016/j.pnpbp.2016.11.005

Article  CAS  PubMed  Google Scholar 

Ambrogini P, Torquato P, Bartolini D et al (2019) Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta (BBA) - Mol Basis Dis. https://doi.org/10.1016/j.bbadis.2019.01.026

Article 

留言 (0)

沒有登入
gif