Divergent Cellular Energetics, Glutamate Metabolism, and Mitochondrial Function Between Human and Mouse Cerebral Cortex

Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145. https://doi.org/10.1097/00004647-200110000-00001

Article  CAS  PubMed  Google Scholar 

Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75(5):762–777. https://doi.org/10.1016/j.neuron.2012.08.019

Article  CAS  PubMed  Google Scholar 

Zhang S, Lachance BB, Mattson MP, Jia X (2021) Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 204:102089. https://doi.org/10.1016/j.pneurobio.2021.102089

Article  CAS  PubMed  PubMed Central  Google Scholar 

Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF Jr (1967) Brain metabolism during fasting. J Clin Invest 46(10):1589–1595. https://doi.org/10.1172/jci105650

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne) 4:102. https://doi.org/10.3389/fendo.2013.00102

Article  CAS  Google Scholar 

Waagepetersen HS, Sonnewald U, Schousboe A (2007) Glutamine, glutamate, and GABA: metabolic aspects. In: Lajtha A, Oja SS, Schousboe A, Saransaari P (eds) Handbook of Neurochemistry and Molecular Neurobiology: Amino Acids and Peptides in the Nervous System. Springer US, Boston, MA 1–21. https://doi.org/10.1007/978-0-387-30373-4_1

Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacol 196:108719. https://doi.org/10.1016/j.neuropharm.2021.108719

Article  CAS  Google Scholar 

McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol (Lausanne) 4:191. https://doi.org/10.3389/fendo.2013.00191

Article  Google Scholar 

Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30. https://doi.org/10.1007/978-3-319-08894-5_2

Article  PubMed  PubMed Central  Google Scholar 

Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

Article  CAS  PubMed  Google Scholar 

Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195(4284):1356–1358. https://doi.org/10.1126/science.14400

Article  CAS  PubMed  Google Scholar 

Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653. https://doi.org/10.1111/j.1471-4159.2006.03913.x

Article  CAS  PubMed  Google Scholar 

Tani H, Dulla CG, Farzampour Z, Taylor-Weiner A, Huguenard JR, Reimer RJ (2014) A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron 81(4):888–900. https://doi.org/10.1016/j.neuron.2013.12.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheung G, Bataveljic D, Visser J, Kumar N, Moulard J, Dallérac G, Mozheiko D, Rollenhagen A et al (2022) Physiological synaptic activity and recognition memory require astroglial glutamine. Nat Commun 13(1):753. https://doi.org/10.1038/s41467-022-28331-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordon BA, Blazey TM, Su Y, Hari-Raj A, Dincer A, Flores S, Christensen J, McDade E et al (2018) Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol 17(3):241–250. https://doi.org/10.1016/s1474-4422(18)30028-0

Article  PubMed  PubMed Central  Google Scholar 

Andersen JV, Schousboe A, Verkhratsky A (2022) Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol:102331. https://doi.org/10.1016/j.pneurobio.2022.102331

Moreira PI, Carvalho C, Zhu X, Smith MA (1802) Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 1:2–10. https://doi.org/10.1016/j.bbadis.2009.10.006

Article  CAS  Google Scholar 

Mochel F, Haller RG (2011) Energy deficit in Huntington disease: why it matters. J Clin Invest 121(2):493–499. https://doi.org/10.1172/jci45691

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J, Moody JP, Edgerly CK, Bordiuk OL, Cormier K, Smith K, Beal MF, Ferrante RJ (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum Mol Genet 19(20):3919–3935. https://doi.org/10.1093/hmg/ddq306

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenthal N, Brown S (2007) The mouse ascending: perspectives for human-disease models. Nat Cell Biol 9(9):993–999. https://doi.org/10.1038/ncb437

Article  CAS  PubMed  Google Scholar 

Scearce-Levie K, Sanchez PE, Lewcock JW (2020) Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov 19(7):447–462. https://doi.org/10.1038/s41573-020-0065-9

Article  CAS  PubMed  Google Scholar 

Blanchard JW, Victor MB, Tsai LH (2022) Dissecting the complexities of Alzheimer disease with in vitro models of the human brain. Nat Rev Neurol 18(1):25–39. https://doi.org/10.1038/s41582-021-00578-6

Article  PubMed  Google Scholar 

Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, Close JL, Long B et al (2019) Conserved cell types with divergent features in human versus mouse cortex. Nature 573(7772):61–68. https://doi.org/10.1038/s41586-019-1506-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001

Article  PubMed  Google Scholar 

de Majo M, Koontz M, Rowitch D, Ullian EM (2020) An update on human astrocytes and their role in development and disease. Glia 68(4):685–704. https://doi.org/10.1002/glia.23771

Article  PubMed  Google Scholar 

Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29(10):547–553. https://doi.org/10.1016/j.tins.2006.08.004

Article  CAS  PubMed  Google Scholar 

Boldog E, Bakken TE, Hodge RD, Novotny M, Aevermann BD, Baka J, Bordé S, Close JL et al (2018) Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat Neurosci 21(9):1185–1195. https://doi.org/10.1038/s41593-018-0205-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53. https://doi.org/10.1016/j.neuron.2015.11.013

Article  CAS  PubMed  Google Scholar 

Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, Oksvold P, Edfors F et al (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367 (6482)https://doi.org/10.1126/science.aay5947

Torrens-Mas M, Pons DG, Sastre-Serra J, Oliver J, Roca P (2020) Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological implications Redox Biol 31:101505. https://doi.org/10.1016/j.redox.2020.101505

Article  CAS  PubMed  Google Scholar 

McNair LF, Kornfelt R, Walls AB, Andersen JV, Aldana BI, Nissen JD, Schousboe A, Waagepetersen HS (2017) Metabolic characterization of acutely isolated hippocampal and cerebral cortical slices using [U-13C]glucose and [1,2–13C]acetate as substrates. Neurochem Res 42(3):810–826. https://doi.org/10.1007/s11064-016-2116-5

Article  CAS  PubMed  Google Scholar 

Andersen JV, Jakobsen E, Westi EW, Lie MEK, Voss CM, Aldana BI, Schousboe A, Wellendorph P et al (2020) Extensive astrocyte metabolism of γ-aminobutyric acid (GABA) sustains glutamine synthesis in the mammalian cerebral cortex. Glia 68(12):2601–2612. https://doi.org/10.1002/glia.23872

Article  PubMed  Google Scholar 

Walls AB, Bak LK, Sonnewald U, Schousboe A, Waagepetersen HS (2014) Metabolic mapping of astrocytes and neurons in culture using stable isotopes and gas chromatography-mass spectrometry (GC-MS). In: Hirrlinger J, Waagepetersen HS (eds) Brain Energy Metabolism. Neuromethods, vol 90. Humana Press, New York, NY,

Andersen JV, Skotte NH, Christensen SK, Polli FS, Shabani M, Markussen KH, Haukedal H, Westi EW et al (2021) Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer’s disease. Cell Death Dis 12(11):954. https://doi.org/10.1038/s41419-021-04237-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andersen JV, Nissen JD, Christensen SK, Markussen KH, Waagepetersen HS (2017) Impaired hippocampal glutamate and glutamine metabolism in the db/db mouse model of type 2 diabetes mellitus. Neural Plast 2017:2107084. https://doi.org/10.1155/2017/2107084

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andersen JV, Westi EW, Jakobsen E, Urruticoechea N, Borges K, Aldana BI (2021) Astrocyte metabolism of the medium-chain fatty acids octanoic acid and decanoic acid promotes GABA synthesis in neurons via elevated glutamine supply. Mol Brain 14(1):132. https://doi.org/10.1186/s13041-021-00842-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andersen JV, Jakobsen E, Waagepetersen HS, Aldana BI (2019) Distinct differences in rates of oxygen consumption and ATP synthesis of regionally isolated non-synaptic mouse brain mitochondria. J Neurosci Res 97(8):961–974. https://doi.org/10.1002/jnr.24371

Article  CAS  PubMed 

留言 (0)

沒有登入
gif