Pinocembrin Inhibits P2X4 Receptor–Mediated Pyroptosis in Hippocampus to Alleviate the Behaviours of Chronic Pain and Depression Comorbidity in Rats

Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H, Gibson S, Keefe FJ, Mogil JS, et al  (2020) The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161(9):1976–1982. https://doi.org/10.1097/j.pain.0000000000001939

Article  PubMed  PubMed Central  Google Scholar 

Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P (2021) Neuropathic pain modeling: focus on synaptic and ion channel mechanisms. Prog Neurobiol:102030. https://doi.org/10.1016/j.pneurobio.2021.102030

Yin N, Yan E, Duan W, Mao C, Fei Q, Yang C, Hu Y, Xu X (2021) The role of microglia in chronic pain and depression: innocent bystander or culprit? Psychopharmacology 238(4):949–958. https://doi.org/10.1007/s00213-021-05780-4

Article  CAS  PubMed  Google Scholar 

Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9(3):113–114

Article  CAS  PubMed  Google Scholar 

Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, Li S, Wang B, Nemmara VV, Wilson R, Jiang Z, et al (2020) Succination inactivates gasdermin D and blocks pyroptosis. Science 369(6511):1633–1637. https://doi.org/10.1126/science.abb9818

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A (2020) Functions of p38 MAP kinases in the central nervous system. Front Mol Neurosci 13:570586. https://doi.org/10.3389/fnmol.2020.570586

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li L, Zou Y, Liu B, Yang R, Yang J, Sun M, Li Z, Xu X, et al (2020) Contribution of the P2X4 receptor in rat hippocampus to the comorbidity of chronic pain and depression. ACS Chem Neurosci 11(24):4387–4397. https://doi.org/10.1021/acschemneuro.0c00623

Article  CAS  PubMed  Google Scholar 

Xing L, Yang T, Cui S, Chen G (2019) Connexin hemichannels in astrocytes: role in CNS disorders. Front Mol Neurosci 12:23. https://doi.org/10.3389/fnmol.2019.00023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suurvali J, Boudinot P, Kanellopoulos J, RuutelBoudinot S (2017) P2X4: a fast and sensitive purinergic receptor. Biomed J 40(5):245–256. https://doi.org/10.1016/j.bj.2017.06.010

Article  PubMed  PubMed Central  Google Scholar 

Jurga AM, Piotrowska A, Makuch W, Przewlocka B, Mika J (2017) Blockade of P2X4 receptors inhibits neuropathic pain-related behavior by preventing MMP-9 activation and consequently, pronociceptive interleukin release in a rat model. Front Pharmacol 8:48. https://doi.org/10.3389/fphar.2017.00048

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribeiro DE, Casarotto PC, Staquini L, Pinto ESMA, Biojone C, Wegener G, Joca S (2019) Reduced P2X receptor levels are associated with antidepressant effect in the learned helplessness model. PeerJ 7:e7834. https://doi.org/10.7717/peerj.7834

Article  PubMed  PubMed Central  Google Scholar 

Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR (2020) Neuroinflammation, pain and depression: an overview of the main findings. Front Psychol 11:1825. https://doi.org/10.3389/fpsyg.2020.01825

Article  PubMed  PubMed Central  Google Scholar 

Sun YB, Zhao H, Mu DL, Zhang W, Cui J, Wu L, Alam A, Wang DX, Ma D (2019) Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis 10(3):167. https://doi.org/10.1038/s41419-019-1416-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai M, Zhuang W, Lv E, Liu Z, Wang Y, Zhang W, Fu W (2022) Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinson’s disease via inhibiting p38MAPK/NF-kappaB signaling pathway. Neurochem Int 152:105221. https://doi.org/10.1016/j.neuint.2021.105221

Article  CAS  PubMed  Google Scholar 

Li S, Sun Y, Song M, Song Y, Fang Y, Zhang Q, Li X, Song N, Ding J, Lu M, Hu G (2021) NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression. JCI Insight 6 (23). https://doi.org/10.1172/jci.insight.146852

Kang ZC, Wang HG, Yang YL, Zhao XY, Zhou QM, Yang YL, Yang JY, Du GH (2020) Pinocembrin ameliorates cognitive impairment induced by vascular dementia: contribution of Reelin-dab1 signaling pathway. Drug Des Devel Ther 14:3577–3587. https://doi.org/10.2147/DDDT.S249176

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye T, Zhang C, Wu G, Wan W, Guo Y, Fo Y, Chen X, Liu X et al (2020) Pinocembrin decreases ventricular fibrillation susceptibility in a rat model of depression. Front Pharmacol 11:547966. https://doi.org/10.3389/fphar.2020.547966

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guan S, Shen Y, Ge H, Xiong W, He L, Liu L, Yin C, Wei X, Gao Y (2019) Dihydromyricetin alleviates diabetic neuropathic pain and depression comorbidity symptoms by inhibiting P2X7 receptor. Front Psych 10:770. https://doi.org/10.3389/fpsyt.2019.00770

Article  Google Scholar 

Yang R, Li Z, Zou Y, Yang J, Li L, Xu X, Schmalzing G, Nie H et al (2021) Gallic acid alleviates neuropathic pain behaviors in rats by inhibiting P2X7 receptor-mediated NF-kappaB/STAT3 signaling pathway. Front Pharmacol 12:680139. https://doi.org/10.3389/fphar.2021.680139

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang R, Li L, Yuan H, Liu H, Gong Y, Zou L, Li S, Wang Z et al (2019) Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X4 receptor in dorsal root ganglia. J Cell Physiol 234(3):2756–2764. https://doi.org/10.1002/jcp.27091

Article  CAS  PubMed  Google Scholar 

Ge H, Sun M, Wei X, Zhang M, Tu H, Hao Y, Chen R, Ye M, Gao Y (2020) Protective effects of dihydromyricetin on primary hippocampal astrocytes from cytotoxicity induced by comorbid diabetic neuropathic pain and depression. Purinergic Signal. https://doi.org/10.1007/s11302-020-09752-9

Article  PubMed  PubMed Central  Google Scholar 

Ge H, Guan S, Shen Y, Sun M, Hao Y, He L, Liu L, Yin C et al (2019) Dihydromyricetin affects BDNF levels in the nervous system in rats with comorbid diabetic neuropathic pain and depression. Sci Rep 9(1):14619. https://doi.org/10.1038/s41598-019-51124-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivetic M, Bhattacharyya A, Zemkova H (2019) P2X2 receptor expression and function is upregulated in the rat supraoptic nucleus stimulated through refeeding after fasting. Front Cell Neurosci 13:284. https://doi.org/10.3389/fncel.2019.00284

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sangweni NF, Moremane M, Riedel S, van Vuuren D, Huisamen B, Mabasa L, Barry R, Johnson R (2020) The prophylactic effect of pinocembrin against doxorubicin-induced cardiotoxicity in an in vitro H9c2 cell model. Front Pharmacol 11:1172. https://doi.org/10.3389/fphar.2020.01172

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jurga AM, Paleczna M, Kadluczka J, Kuter KZ (2021) Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules 11 (9). https://doi.org/10.3390/biom11091361

Roughan WH, Campos AI, Garcia-Marin LM, Cuellar-Partida G, Lupton MK, Hickie IB, Medland SE, Wray NR et al (2021) Comorbid chronic pain and depression: shared risk factors and differential antidepressant effectiveness. Front Psychiatry 12:643609. https://doi.org/10.3389/fpsyt.2021.643609

Article  PubMed  PubMed Central  Google Scholar 

IsHak WW, Wen RY, Naghdechi L, Vanle B, Dang J, Knosp M, Dascal J, Marcia L et al (2018) Pain and depression: a systematic review. Harv Rev Psychiatry 26(6):352–363. https://doi.org/10.1097/HRP.0000000000000198

Article  PubMed  Google Scholar 

Yang X, Wang X, Chen XY, Ji HY, Zhang Y, Liu AJ (2018) Pinocembrin(-)lecithin complex: characterization, solubilization, and antioxidant activities. Biomolecules 8 (2). https://doi.org/10.3390/biom8020041

Saraiva M, Vieira P, O'Garra A (2020) Biology and therapeutic potential of interleukin-10. J Exp Med 217 (1). https://doi.org/10.1084/jem.20190418

Xia CY, Wang ZZ, Wang HQ, Ren SY, Lou YX, Jin C, Qu TG, Feng ST et al (2020) Connexin 43: a novel ginsenoside Rg1-sensitive target in a rat model of depression. Neuropharmacology 170:108041. https://doi.org/10.1016/j.neuropharm.2020.108041

Article  CAS  PubMed  Google Scholar 

Zhu G, Chen Z, Dai B, Zheng C, Jiang H, Xu Y, Sheng X, Guo J, Dan Y, Liang S, Li G (2018) Chronic lead exposure enhances the sympathoexcitatory response associated with P2X4 receptor in rat stellate ganglia. Environ Toxicol 33(6):631–639. https://doi.org/10.1002/tox.22547

Article  CAS  PubMed  Google Scholar 

Layhadi JA, Fountain SJ (2017) P2X4 receptor-dependent Ca(2+) influx in model human monocytes and macrophages. International journal of molecular sciences 18 (11). https://doi.org/10.3390/ijms18112261

Rathinam VAK, Zhao Y, Shao F (2019) Innate immunity to intracellular LPS. Nat Immunol 20(5):527–533. https://doi.org/10.1038/s41590-019-0368-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K, et al (2019) Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 10:1511. https://doi.org/10.3389/fimmu.2019.01511

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan H, Ouyang S, Yang R, Li S, Gong Y, Zou L, Jia T, Zhao S, Wu B et al (2018) Osthole alleviated diabetic neuropathic pain mediated by the P2X4 receptor in dorsal root ganglia. Brain Res Bull 142:289–296. https://doi.org/10.1016/j.brainresbull.2018.08.008

Article  CAS  PubMed  Google Scholar 

Zhao YW, Pan YQ, Tang MM, Lin WJ (2018) Blocking p38 signaling reduces the activation of pro-inflammatory cytokines and the phosphorylation of p38 in the habenula and reverses depressive-like behaviors induced by neuroinflammation. Front Pharmacol 9:511. https://doi.org/10.3389/fphar.2018.00511

Article  CAS  PubMed  PubMed Central

留言 (0)

沒有登入
gif