Temporal Pattern of Neuroinflammation Associated with a Low Glycemic Index Diet in the 5xFAD Mouse Model of Alzheimer’s Disease

LaFerla FM, Oddo S (2005) Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 11:170–176

CAS  PubMed  Google Scholar 

Busche MA, Hyman BT (2020) Synergy between amyloid-beta and tau in Alzheimer’s disease. Nat Neurosci 23:1183–1193

CAS  PubMed  Google Scholar 

Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015

CAS  PubMed  Google Scholar 

Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372

CAS  PubMed  Google Scholar 

Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

CAS  PubMed  PubMed Central  Google Scholar 

Wu T, Dejanovic B, Gandham VD, Gogineni A, Edmonds R, Schauer S et al (2019) Complement C3 Is Activated in human AD brain and Is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep 28(2111–23):e6

Google Scholar 

Bettcher BM, Tansey MG, Dorothee G, Heneka MT (2021) Peripheral and central immune system crosstalk in Alzheimer disease - a research prospectus. Nat Rev Neurol 17:689–701

PubMed  PubMed Central  Google Scholar 

Tao Q, Ang TFA, DeCarli C, Auerbach SH, Devine S, Stein TD et al (2018) Association of chronic low-grade inflammation with risk of Alzheimer disease in ApoE4 carriers. JAMA Netw Open 1:e183597

PubMed  PubMed Central  Google Scholar 

Long JM, Holtzman DM (2019) Alzheimer Disease: an update on pathobiology and treatment strategies. Cell 179:312–339

CAS  PubMed  PubMed Central  Google Scholar 

Colizzi C (2019) The protective effects of polyphenols on Alzheimer’s disease: a systematic review. Alzheimers Dement (N Y) 5:184–196

Google Scholar 

Venigalla M, Sonego S, Gyengesi E, Sharman MJ, Munch G (2016) Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochem Int 95:63–74

CAS  PubMed  Google Scholar 

Lee J, Torosyan N, Silverman DH (2017) Examining the impact of grape consumption on brain metabolism and cognitive function in patients with mild decline in cognition: A double-blinded placebo controlled pilot study. Exp Gerontol 87:121–128

CAS  PubMed  Google Scholar 

Liao H, Chou LM, Chien YW, Wu CH, Chang JS, Lin CI et al (2017) Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet. J Nutr Biochem 43:132–140

CAS  PubMed  Google Scholar 

Gol M, Ghorbanian D, Soltanpour N, Faraji J, Pourghasem M (2019) Protective effect of raisin (currant) against spatial memory impairment and oxidative stress in Alzheimer disease model. Nutr Neurosci 22:110–118

CAS  PubMed  Google Scholar 

Mountaki C, Dafnis I, Panagopoulou EA, Vasilakopoulou PB, Karvelas M, Chiou A et al (2021) Mechanistic insight into the capacity of natural polar phenolic compounds to abolish Alzheimer’s disease-associated pathogenic effects of apoE4 forms. Free Radic Biol Med 171:284–301

CAS  PubMed  Google Scholar 

Olmo-Cunillera A, Escobar-Avello D, Perez AJ, Marhuenda-Munoz M, Lamuela-Raventos RM, Vallverdu-Queralt A (2019) Is eating raisins healthy? Nutrients 12:54

PubMed Central  Google Scholar 

Puglisi MJ, Vaishnav U, Shrestha S, Torres-Gonzalez M, Wood RJ, Volek JS et al (2008) Raisins and additional walking have distinct effects on plasma lipids and inflammatory cytokines. Lipids Health Dis 7:14

PubMed  PubMed Central  Google Scholar 

Kountouri AM, Gioxari A, Karvela E, Kaliora AC, Karvelas M, Karathanos VT (2013) Chemopreventive properties of raisins originating from Greece in colon cancer cells. Food Funct 4:366–372

CAS  PubMed  Google Scholar 

Di Lorenzo C, Sangiovanni E, Fumagalli M, Colombo E, Frigerio G, Colombo F et al (2016) Evaluation of the anti-inflammatory activity of raisins (Vitis vinifera L.) in Human gastric epithelial cells: a comparative study. Int J Mol Sci 17:1156

PubMed Central  Google Scholar 

Chiou A, Karathanos VT, Mylona A, Salta FN, Preventi F, Andrikopoulos NK (2007) Currants (Vitis vinifera L.) content of simple phenolics and antioxidant activity. Food Chem 102:516–22

CAS  Google Scholar 

Chiou A, Panagopoulou EA, Gatzali F, De Marchi S, Karathanos VT (2014) Anthocyanins content and antioxidant capacity of Corinthian currants (Vitis vinifera L., var Apyrena). Food Chem 146:157–65

CAS  PubMed  Google Scholar 

Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T et al (2021) Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules 27:233

PubMed  PubMed Central  Google Scholar 

Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA (2009) Protective effect of quercetin in primary neurons against Abeta(1–42): relevance to Alzheimer’s disease. J Nutr Biochem 20:269–275

CAS  PubMed  Google Scholar 

Grinan-Ferre C, Bellver-Sanchis A, Izquierdo V, Corpas R, Roig-Soriano J, Chillon M et al (2021) The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 67:101271

CAS  PubMed  Google Scholar 

Uddin MS, Al Mamun A, Kabir MT, Ahmad J, Jeandet P, Sarwar MS et al (2020) Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol 886:173412

CAS  PubMed  Google Scholar 

Silva Dos Santos J, Goncalves Cirino JP, de Oliveira Carvalho P, Ortega MM (2020) The pharmacological action of kaempferol in central nervous system diseases: a review. Front Pharmacol 11:565700

PubMed  Google Scholar 

Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K (2019) Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci 224:109–119

CAS  PubMed  Google Scholar 

Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

CAS  PubMed  PubMed Central  Google Scholar 

Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 33(196):e29-40

Google Scholar 

Kaminari A, Giannakas N, Tzinia A, Tsilibary EC (2017) Overexpression of matrix metalloproteinase-9 (MMP-9) rescues insulin-mediated impairment in the 5XFAD model of Alzheimer’s disease. Sci Rep 7:683

PubMed  PubMed Central  Google Scholar 

Lazou A, Nikolidaki E, Karathanos V, Zogzas N (2020) Thermal properties of Corinthian currant pastes as affected by storage. J Food Process Preserv 44:e14755

CAS  Google Scholar 

Kountouri AM, Gioxari A, Karvela E, Kaliora AC, Karvelas M, Karathanos VT (2013) Chemopreventive properties of raisins originating from Greece in colon cancer cells. Food Funct 4:366–372

CAS  PubMed  Google Scholar 

Arnous A, Makris DP, Kefalas P (2002) Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J Food Compos Anal 15:655–665

CAS  Google Scholar 

Nikolidaki EK, Chiou A, Christea M, Gkegka AP, Karvelas M, Karathanos VT (2017) Sun dried Corinthian currant (Vitis Vinifera L., var. Apyrena) simple sugar profile and macronutrient characterization. Food Chem 221:365–72

CAS  PubMed  Google Scholar 

Franklin KBJ, Paxinos G (2013) Paxinos and Franklin’s The mouse brain in stereotaxic coordinates, 4th edn. Academic, Oxford

Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H (2013) Inhibition of glycogen synthase kinase-3 ameliorates beta-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem 288:1295–1306

CAS  PubMed  Google Scholar 

Deng Y, Xiong Z, Chen P, Wei J, Chen S, Yan Z (2014) beta-amyloid impairs the regulation of N-methyl-D-aspartate receptors by glycogen synthase kinase 3. Neurobiol Aging 35:449–459

CAS  PubMed  Google Scholar 

Saul A, Wirths O (2017) Endogenous Apolipoprotein E (ApoE) Fragmentation is linked to amyloid pathology in transgenic mouse models of Alzheimer’s disease. Mol Neurobiol 54:319–327

CAS  PubMed  Google Scholar 

Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 93:1412–1421

CAS  PubMed  Google Scholar 

Garzon DJ, Fahnestock M (2007) Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J Neurosci 27:2628–2635

CAS  PubMed  PubMed Central  Google Scholar 

Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172

PubMed  Google Scholar 

Cianciulli A, Porro C, Calvello R, Trotta T, Lofrumento DD, Panaro MA (2020) Microglia Mediated neuroinflammation: focus on PI3K modulation. Biomolecules 10:137

CAS  PubMed Central  Google Scholar 

Kwon HS, Koh SH (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Νeurodegener 9:42

Google Scholar 

Ryu KY, Lee HJ, Woo H, Kang RJ, Han KM, Park H et al (2019) Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling. J Neuroinflammation 16:190

PubMed  PubMed Central  Google Scholar 

Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC (2021) PI3K/AKT Signal pathway: a target of natural products in the prevention and treatment of Alzheimer’s Disease and Parkinson’s disease. Front Pharmacol 12:648636

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif