Exosome-Encapsulated microRNA-140-5p Alleviates Neuronal Injury Following Subarachnoid Hemorrhage by Regulating IGFBP5-Mediated PI3K/AKT Signaling Pathway

Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet 389(10069):655–666. https://doi.org/10.1016/S0140-6736(16)30668-7

Article  PubMed  Google Scholar 

Lawton MT, Vates GE (2017) Subarachnoid hemorrhage. N Engl J Med 377(3):257–266. https://doi.org/10.1056/NEJMcp1605827

Article  PubMed  Google Scholar 

Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10(1):44–58. https://doi.org/10.1038/nrneurol.2013.246

Article  CAS  PubMed  Google Scholar 

Sabri M, Lass E, Macdonald RL (2013) Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat 2013:394036. https://doi.org/10.1155/2013/394036

Article  PubMed  PubMed Central  Google Scholar 

Schneider UC, Davids AM, Brandenburg S et al (2015) Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathol 130(2):215–231. https://doi.org/10.1007/s00401-015-1440-1

Article  PubMed  Google Scholar 

Xia DY, Zhang HS, Wu LY, Zhang XS, Zhou ML, Hang CH (2017) Pentoxifylline alleviates early brain injury after experimental subarachnoid hemorrhage in rats: possibly via inhibiting TLR 4/NF-kappaB signaling pathway. Neurochem Res 42(4):963–974. https://doi.org/10.1007/s11064-016-2129-0

Article  CAS  PubMed  Google Scholar 

Xie Y, Liu W, Zhang X et al (2015) Human albumin improves long-term behavioral sequelae after subarachnoid hemorrhage through neurovascular remodeling. Crit Care Med 43(10):e440-449. https://doi.org/10.1097/CCM.0000000000001193

Article  PubMed  Google Scholar 

Nagata E, Nonaka T, Moriya Y et al (2016) Inositol hexakisphosphate kinase 2 promotes cell death in cells with cytoplasmic TDP-43 aggregation. Mol Neurobiol 53(8):5377–5383. https://doi.org/10.1007/s12035-015-9470-1

Article  CAS  PubMed  Google Scholar 

Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S (2010) Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30(2):639–649. https://doi.org/10.1523/JNEUROSCI.4988-09.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

He T, Zuo Y, Ai-Zakwani K et al (2018) Subarachnoid hemorrhage enhances the expression of TDP-43 in the brain of experimental rats and human subjects. Exp Ther Med 16(4):3363–3368. https://doi.org/10.3892/etm.2018.6636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang T, He D, Kleiner G, Kuluz J (2007) Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. J Spinal Cord Med 30(Suppl 1):S35-40. https://doi.org/10.1080/10790268.2007.11753967

Article  PubMed  PubMed Central  Google Scholar 

Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902

Article  CAS  PubMed  Google Scholar 

Ma X, Huang M, Zheng M et al (2020) ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer’s disease. J Control Release 327:688–702. https://doi.org/10.1016/j.jconrel.2020.09.019

Article  CAS  PubMed  Google Scholar 

Hwang S, Park SK, Lee HY et al (2014) miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett 588(17):2957–2963. https://doi.org/10.1016/j.febslet.2014.05.048

Article  CAS  PubMed  Google Scholar 

Wei Z, Qiao S, Zhao J et al (2019) miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury. Life Sci 232:116632. https://doi.org/10.1016/j.lfs.2019.116632

Article  CAS  PubMed  Google Scholar 

Wang S, Cui Y, Xu J, Gao H (2019) miR-140-5p attenuates neuroinflammation and brain injury in rats following intracerebral hemorrhage by targeting TLR4. Inflammation 42(5):1869–1877. https://doi.org/10.1007/s10753-019-01049-3

Article  CAS  PubMed  Google Scholar 

Qiao D, Xu J, Le C et al (2014) Insulin-like growth factor binding protein 5 (IGFBP5) mediates methamphetamine-induced dopaminergic neuron apoptosis. Toxicol Lett 230(3):444–453. https://doi.org/10.1016/j.toxlet.2014.08.010

Article  CAS  PubMed  Google Scholar 

Yu L, Lu Y, Han X et al (2016) microRNA-140-5p inhibits colorectal cancer invasion and metastasis by targeting ADAMTS5 and IGFBP5. Stem Cell Res Ther 7(1):180. https://doi.org/10.1186/s13287-016-0438-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tardif G, Hum D, Pelletier JP, Duval N, Martel-Pelletier J (2009) Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord 10:148. https://doi.org/10.1186/1471-2474-10-148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen K, Hou J, Song Y et al (2018) Chi-miR-3031 regulates beta-casein via the PI3K/AKT-mTOR signaling pathway in goat mammary epithelial cells (GMECs). BMC Vet Res 14(1):369. https://doi.org/10.1186/s12917-018-1695-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin X, Yu S, Zhou L et al (2017) Cisplatin-resistant lung cancer cell-derived exosomes increase cisplatin resistance of recipient cells in exosomal miR-100-5p-dependent manner. Int J Nanomedicine 12:3721–3733. https://doi.org/10.2147/IJN.S131516

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Balkom BW, de Jong OG, Smits M et al (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121(19):3997-4006-S39915-3915. https://doi.org/10.1182/blood-2013-02-478925

Article  CAS  Google Scholar 

Chen X, Jiang M, Li H et al (2020) CX3CL1/CX3CR1 axis attenuates early brain injury via promoting the delivery of exosomal microRNA-124 from neuron to microglia after subarachnoid hemorrhage. J Neuroinflammation 17(1):209. https://doi.org/10.1186/s12974-020-01882-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen D, Wang X, Huang J, Cui S, Zhang L (2020) CDKN1B mediates apoptosis of neuronal cells and inflammation induced by oxyhemoglobin via miR-502-5p after subarachnoid hemorrhage. J Mol Neurosci 70(7):1073–1080. https://doi.org/10.1007/s12031-020-01512-z

Article  CAS  PubMed  Google Scholar 

Li Y, Wang J, Li Z et al (2019) Propoxyphene mediates oxyhemoglobin-induced injury in rat cortical neurons through up-regulation of active-beta-catenin. Front Pharmacol 10:1616. https://doi.org/10.3389/fphar.2019.01616

Article  CAS  PubMed  Google Scholar 

Tsai AC, Pan SL, Liao CH et al (2010) Moscatilin, a bibenzyl derivative from the India orchid Dendrobium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. Cancer Lett 292(2):163–170. https://doi.org/10.1016/j.canlet.2009.11.020

Article  CAS  PubMed  Google Scholar 

Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167(2):327–334. https://doi.org/10.1016/j.jneumeth.2007.08.004

Article  PubMed  Google Scholar 

Liu F, Chen Y, Hu Q et al (2015) MFGE8/integrin beta3 pathway alleviates apoptosis and inflammation in early brain injury after subarachnoid hemorrhage in rats. Exp Neurol 272:120–127. https://doi.org/10.1016/j.expneurol.2015.04.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trabolsi C, Takash Chamoun W, Hijazi A, Nicoletti C, Maresca M, Nasser M (2021) Study of neuroprotection by a combination of the biological antioxidant (eucalyptus extract) and the antihypertensive drug candesartan against chronic cerebral ischemia in rats. Molecules 26(4):839. https://doi.org/10.3390/molecules26040839

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Q, Enkhjargal B, Huang L et al (2018) Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-kappaB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation 15(1):178. https://doi.org/10.1186/s12974-018-1211-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drommelschmidt K, Serdar M, Bendix I et al (2017) Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav Immun 60:220–232. https://doi.org/10.1016/j.bbi.2016.11.011

Article  CAS  PubMed  Google Scholar 

Yan BC, Wang J, Rui Y et al (2019) Neuroprotective effects of gabapentin against cerebral ischemia reperfusion-induced neuronal autophagic injury via regulation of the PI3K/Akt/mTOR signaling pathways. J Neuropathol Exp Neurol 78(2):157–171. https://doi.org/10.1093/jnen/nly119

Article  CAS  PubMed  Google Scholar 

Peroni D, Scambi I, Pasini A et al (2008) Stem molecular signature of adipose-derived stromal cells. Exp Cell Res 314(3):603–615. https://doi.org/10.1016/j.yexcr.2007.10.007

Article  CAS  PubMed  Google Scholar 

Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715. https://doi.org/10.1038/jcbfm.2013.152

Article  CAS 

留言 (0)

沒有登入
gif