Using time-resolved monitor wearing data to study the effect of clean cooking interventions on personal air pollution exposures

Steinle S, Reis S, Sabel CE. Quantifying human exposure to air pollution—Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci Total Environ. 2013;443:184–93.

Article  CAS  Google Scholar 

Nieuwenhuijsen M, Paustenbach D, Duarte-Davidson R. New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies. Environ Int. 2006;32:996–1009.

Article  CAS  Google Scholar 

Weis BK, Balshaw D, Barr JR, Brown D, Ellisman M, Lioy P, et al. Personalized Exposure Assessment: Promising Approaches for Human Environmental Health Research. Environ Health Perspect. 2005;113:840–8.

Article  CAS  Google Scholar 

Lawless P, Thornburg J, Rodes C, Williams R. Personal exposure monitoring wearing protocol compliance: An initial assessment of quantitative measurement. J Expo Sci Environ Epidemiol. 2012;22:274–80.

Article  Google Scholar 

Baumgartner J, Carter E, Schauer JJ, Ezzati M, Daskalopoulou SS, Valois M-F et al. Household air pollution and measures of blood pressure, arterial stiffness and central haemodynamics. Heart. 2018:104;1515–21.

Article  CAS  Google Scholar 

Baumgartner J, Clark S, Carter E, Lai A, Zhang Y, Shan M, et al. Effectiveness of a Household Energy Package in Improving Indoor Air Quality and Reducing Personal Exposures in Rural China. Environ Sci Technol. 2019;53:9306–16.

Article  CAS  Google Scholar 

Milà C, Salmon M, Sanchez M, Ambrós A, Bhogadi S, Sreekanth V, et al. When, Where, and What? Characterizing Personal PM2.5 Exposure in Periurban India by Integrating GPS, Wearable Camera, and Ambient and Personal Monitoring Data. Environ Sci Technol. 2018;52:13481–90.

Article  CAS  Google Scholar 

Ebelt ST, Petkau AJ, Vedal S, Fisher TV, Brauer M. Exposure of Chronic Obstructive Pulmonary Disease Patients to Particulate Matter: Relationships between Personal and Ambient Air Concentrations. J Air Waste Manag Assoc. 2000;50:1081–94.

Article  CAS  Google Scholar 

Brook RD. Cardiovascular effects of air pollution. Clin Sci. 2008;115:175–87.

Article  CAS  Google Scholar 

Chartier R, Phillips M, Mosquin P, Elledge M, Bronstein K, Nandasena S, et al. A comparative study of human exposures to household air pollution from commonly used cookstoves in Sri Lanka. Indoor Air. 2017;27:147–59.

Article  CAS  Google Scholar 

Ha S, Nobles C, Kanner J, Sherman S, Cho S-H, Perkins N, et al. Air Pollution Exposure Monitoring among Pregnant Women with and without Asthma. Int J Environ Res Public Health. 2020;17:4888.

Article  CAS  Google Scholar 

Zhao W, Hopke PK, Gelfand EW, Rabinovitch N. Use of an expanded receptor model for personal exposure analysis in schoolchildren with asthma. Atmos Environ. 2007;41:4084–96.

Article  CAS  Google Scholar 

Rodes CE, Lawless PA, Thornburg JW, Williams RW, Croghan CW. DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population. Atmos Environ. 2010;44:1386–99.

Article  CAS  Google Scholar 

Bennitt FB, Wozniak SS, Causey K, Burkart K, Brauer M. Estimating disease burden attributable to household air pollution: new methods within the Global Burden of Disease Study. Lancet Glob Health. 2021;9:S18.

Article  Google Scholar 

Lee AG, Kaali S, Quinn A, Delimini R, Burkart K, Opoku-Mensah J et al. Prenatal Household Air Pollution is Associated with Impaired Infant Lung Function with Sex-Specific Effects: Evidence from GRAPHS, a Cluster Randomized Cookstove Intervention Trial. Am J Respir Crit Care Med. 2018. https://doi.org/10.1164/rccm.201804-0694OC.

Lee KK, Bing R, Kiang J, Bashir S, Spath N, Stelzle D, et al. Adverse health effects associated with household air pollution: a systematic review, meta-analysis, and burden estimation study. Lancet Glob Health. 2020;8:e1427–e1434.

Article  Google Scholar 

Smith KR, Bruce N, Balakrishnan K, Adair-Rohani H, Balmes J, Chafe Z, et al. Millions Dead: How Do We Know and What Does It Mean? Methods Used in the Comparative Risk Assessment of Household Air Pollution. Annu Rev Public Health. 2014;35:185–206.

Article  Google Scholar 

Clark ML, Peel JL, Balakrishnan K, Breysse PN, Chillrud SN, Naeher LP, et al. Health and Household Air Pollution from Solid Fuel Use: The Need for Improved Exposure Assessment. Environ Health Perspect. 2013;121:1120–8.

Article  CAS  Google Scholar 

Jack DW, Asante KP, Wylie BJ, Chillrud SN, Whyatt RM, Ae-Ngibise KA et al. Ghana randomized air pollution and health study (GRAPHS): study protocol for a randomized controlled trial. Trials. 2015;16. https://doi.org/10.1186/s13063-015-0930-8.

Chillrud SN, Ae-Ngibise KA, Gould CF, Owusu-Agyei S, Mujtaba M, Manu G, et al. The effect of clean cooking interventions on mother and child personal exposure to air pollution: results from the Ghana Randomized Air Pollution and Health Study (GRAPHS). J Expo Sci Environ Epidemiol. 2021;31:683–98.

Article  CAS  Google Scholar 

Jack DW, Ae-Ngibise KA, Gould CF, Boamah-Kaali E, Lee AG, Mujtaba MN, et al. A cluster randomised trial of cookstove interventions to improve infant health in Ghana. BMJ Glob Health. 2021;6:e005599.

Article  Google Scholar 

Kinney PL, Asante K-P, Lee AG, Ae-Ngibise KA, Burkart K, Boamah-Kaali E, et al. Prenatal and Postnatal Household Air Pollution Exposures and Pneumonia Risk: Evidence From the Ghana Randomized Air Pollution and Health Study. Chest. 2021;160:1634–44.

Article  CAS  Google Scholar 

Quinn AK, Adjei IA, Ae-Ngibise KA, Agyei O, Boamah-Kaali EA, Burkart K, et al. Prenatal household air pollutant exposure is associated with reduced size and gestational age at birth among a cohort of Ghanaian infants. Environ Int. 2021;155:106659.

Article  CAS  Google Scholar 

Quinn AK. Modifiable Risk in a Changing Climate: Linking household-level temperature, humidity, and air pollution to population health. 2016. https://academiccommons.columbia.edu/doi/10.7916/D83F4PWW (accessed 11 Sep 2019).

Quinn AK, Ae-Ngibise KA, Jack DW, Boamah EA, Enuameh Y, Mujtaba MN, et al. Association of Carbon Monoxide exposure with blood pressure among pregnant women in rural Ghana: evidence from GRAPHS. Int J Hyg Environ Health. 2016;219:176–83.

Article  CAS  Google Scholar 

Van Vliet EDS, Asante K, Jack DW, Kinney PL, Whyatt RM, Chillrud SN, et al. Personal exposures to fine particulate matter and black carbon in households cooking with biomass fuels in rural Ghana. Environ Res. 2013;127:40–48.

Article  CAS  Google Scholar 

Chillrud SN, Yang Q, Smith C, Ross J, Kinney P, Liu X et al. Biking, potential inhaled dose and cardiovascular indicators: pilot results from the New York City Biking and Breathing Study. Queenstown, New Zealand, 2019 https://www.casanz.org.au/resources/publications/casanz-conference-proceedings/purchase-casanz-conference-proceedings.

Raynes-Greenow C, Islam S, Khan J, Tasnim F, Nisha MK, Thornburg J, et al. A Feasibility Study Assessing Acceptability and Supply Issues of Distributing LPG Cookstoves and Gas Cylinders to Pregnant Women Living in Rural Bangladesh for Poriborton: The CHANge Trial. Int J Environ Res Public Health. 2020;17:848.

Article  Google Scholar 

Rodes CE, Chillrud SN, Haskell WL, Intille SS, Albinali F, Rosenberger ME. Predicting adult pulmonary ventilation volume and wearing complianceby on-board accelerometry during personal level exposure assessments. Atmos Environ. 2012;57:126–37.

Article  CAS  Google Scholar 

Zhang T, Chillrud SN, Pitiranggon M, Ross J, Ji J, Yan B. Development of an approach to correcting MicroPEM baseline drift. Environ Res. 2018;164:39–44.

Article  CAS  Google Scholar 

Halekoh U, Højsgaard S, Yan J. The R Package ‘geepack’ for Generalized Estimating Equations. J Stat Softw. 2006;15. https://doi.org/10.18637/jss.v015.i02.

Hodas N, Loh M, Shin H‐M, Li D, Bennett D, McKone TE, et al. Indoor inhalation intake fractions of fine particulate matter: review of influencing factors. Indoor Air. 2016;26:836–56.

Article  CAS  Google Scholar 

Johnson M, Piedrahita R, Pillarisetti A, Shupler M, Menya D, Rossanese M, et al. Modeling approaches and performance for estimating personal exposure to household air pollution: a case study in Kenya. Indoor Air. 2021;31:1441–57.

Article  CAS  Google Scholar 

L’Orange C, Leith D, Volckens J, DeFoort M. A quantitative model of cookstove variability and field performance: implications for sample size. Biomass- Bioenergy. 2015;72:233–41.

Article  Google Scholar 

Afeti GM, Resch FJ. Physical characteristics of Saharan dust near the Gulf of Guinea. Atmos Environ. 2000;34:1273–9.

Article  CAS  Google Scholar 

Zhang T, Chillrud SN, Ji J, Chen Y, Pitiranggon M, Li W, et al. Comparison of PM2.5 Exposure in Hazy and Non-Hazy Days in Nanjing, China. Aerosol Air Qual Res. 2017;17:2235–46.

Article  CAS  Google Scholar 

van Donkelaar A, Hammer MS, Bindle L, Brauer M, Brook JR, Garay MJ, et al. Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environ Sci Technol. 2021;55:15287–300.

Article  CAS  Google Scholar 

Liao J, McCracken JP, Piedrahita R, Thompson L, Mollinedo E, Canuz E, et al. The use of bluetooth low energy Beacon systems to estimate indirect personal exposure to household air pollution. J Expo Sci Environ Epidemiol. 2019;30:990–1000.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif