Letrozole ameliorates liver fibrosis through the inhibition of the CTGF pathway and 17β-hydroxysteroid dehydrogenase 13 expression

Ibrahim SH, Hirsova P, Gores GJ. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut. 2018;67:963–72.

Article  CAS  PubMed  Google Scholar 

Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73:202–9.

Article  PubMed  Google Scholar 

Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2018;53:362–76.

Article  CAS  PubMed  Google Scholar 

Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver Fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149:389-97.e10.

Article  PubMed  Google Scholar 

Ramachandran P, Dobie R, Wilson-Kanamori JR, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobil Pancreat Sci. 2015;22:512–8.

Article  Google Scholar 

Gressner OA, Lahme B, Demirci I, et al. Differential effects of TGF-beta on connective tissue growth factor (CTGF/CCN2) expression in hepatic stellate cells and hepatocytes. J Hepatol. 2007;47:699–710.

Article  CAS  PubMed  Google Scholar 

Abe H, Kamimura K, Kobayashi Y, et al. Effective prevention of liver fibrosis by liver-targeted hydrodynamic gene delivery of matrix metalloproteinase-13 in a rat liver fibrosis model. Mol Ther Nucleic Acids. 2016;5: e276.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Napolitano F, Zhao Y, Moreira VM, et al. Drug repositioning: a machine-learning approach through data integration. J Cheminform. 2013;5:30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakashima M, Tachiki H, Enomoto H, et al. Changes in hepatic gene expression induced by various statin formulations in chimeric PXB-mouse with highly humanized liver. Toxicol Lett. 2013;221:S194.

Article  Google Scholar 

Nakashima M, Enomoto H, Tachiki H, et al. Effects of irinotecan on hepatic gene expression in chimeric PXB-mouse® with highly humanized liver. Toxicol Lett. 2014;229:S235.

Article  Google Scholar 

Sanoh S, Horiguchi A, Sugihara K, et al. Prediction of in vivo hepatic clearance and half-life of drug candidates in human using chimeric mice with humanized liver. Drug Metab Dispos. 2012;40:322–8.

Article  CAS  PubMed  Google Scholar 

Sakuma T, Kawasaki Y, Jarukamjorn K, et al. Sex differences of drug-metabolizing enzyme: Female predominant expression of human and mouse cytochrome P450 3A isoforms. J Health Sci. 2009;55:325–37.

Article  CAS  Google Scholar 

Yamada T, Obata A, Kashiwagi Y, et al. Gd-EOB-DTPA-enhanced-MR imaging in the inflammation stage of nonalcoholic steatohepatitis (NASH) in mice. Magn Res Imaging. 2016;34:724–9.

Article  Google Scholar 

Brigstock DR. Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): From pharmacological inhibition in vitro to targeted siRNA therapy in vivo. J Cell Commun Signal. 2009;3:5–18.

Article  PubMed  PubMed Central  Google Scholar 

Vrekoussis T, Chaniotis V, Navrozoglou I, et al. Image analysis of breast cancer immunohistochemistry-stained sections using ImageJ: an RGB-based model. Anticancer Res. 2009;29:4995–8.

CAS  PubMed  Google Scholar 

Iwata A, Kamada Y, Ebisutani Y, et al. Establishment of mouse Mac-2 binding protein enzyme-linked immunosorbent assay and its application for mouse chronic liver disease models. Hepatol Res. 2016;47:902–9.

Article  PubMed  Google Scholar 

Sierra-Filardi E, Nieto C, Domínguez-Soto A, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol. 2014;192:3858–67.

Article  CAS  PubMed  Google Scholar 

Lan T, Li C, Yang G, et al. Sphingosine kinase 1 promotes liver fibrosis by preventing miR-19b-3p-mediated inhibition of CCR2. Hepatology. 2018;68:1070–86.

Article  CAS  PubMed  Google Scholar 

Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577–94.

Article  CAS  PubMed  Google Scholar 

Hintermann E, Bayer M, Pfeilschifter JM, et al. CXCL10 promotes liver fibrosis by prevention of NK cell mediated hepatic stellate cell inactivation. J Autoimmun. 2010;35:424–35.

Article  CAS  PubMed  Google Scholar 

Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: From physiopathology to therapy. J Hepatol. 2016;64:1403–15.

Article  CAS  PubMed  Google Scholar 

Rong X, Liu J, Yao X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Res Ther. 2019;10:98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mezquita B, Mezquita P, Pau M, et al. All-trans-retinoic acid activates the pro-invasive Src-YAP-interleukin 6 axis in triple-negative MDA-MB-231 breast cancer cells while cerivastatin reverses this action. Sci Rep. 2018;8:7047.

Article  PubMed  PubMed Central  Google Scholar 

Ma Y, Belyaeva OV, Brown PM, et al. 17-Beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histologic features of nonalcoholic fatty liver disease. Hepatology. 2019;69:1504–19.

Article  CAS  PubMed  Google Scholar 

Su W, Mao Z, Liu Y, et al. Role of HSD17B13 in the liver physiology and pathophysiology. Mol Cell Endocrinol. 2019;489:119–25.

Article  CAS  PubMed  Google Scholar 

Sookoian S, Pirola CJ, Valenti L, et al. Genetic pathways in nonalcoholic fatty liver disease: insights from systems biology. Hepatology. 2020;72:330–46.

Article  PubMed  Google Scholar 

Stender S, Romeo S. HSD17B13 as a promising therapeutic target against chronic liver disease. Liver Int. 2020;40:756–7.

Article  PubMed  Google Scholar 

Yang W, Han W, Qin A, et al. The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol. 2018;233:4606–17.

Article  CAS  PubMed  Google Scholar 

Lipson KE, Wong C, Teng Y, et al. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Rep. 2012;5:S24.

Article  Google Scholar 

Makino Y, Hikita H, Kodama T, et al. CTGF mediates tumor-stroma interactions between hepatoma cells and hepatic stellate cells to accelerate HCC progression. Cancer Res. 2018;78:4902–14.

Article  CAS  PubMed  Google Scholar 

Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta. 2012;1821:152–67.

Article  CAS  PubMed  Google Scholar 

Qin XY, Suzuki H, Honda M, et al. Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid. Proc Natl Acad Sci U S A. 2018;115:4969–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimizu H, Tsubota T, Kanki K, et al. All-trans retinoic acid ameliorates hepatic stellate cell activation via suppression of thioredoxin interacting protein expression. J Cell Physiol. 2018;233:607–16.

Article  CAS  PubMed  Google Scholar 

Lee KA, Song YC, Kim GY, et al. Retinoic acid alleviates Con A-induced hepatitis and differentially regulates effector production in NKT cells. Eur J Immunol. 2012;42:1685–94.

Article  CAS  PubMed  Google Scholar 

Su W, Wang Y, Jia X, et al. Comparative proteomic study reveals 17β-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2014;111:11437–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saeed A, Bartuzi P, Heegsma J, et al. Impaired hepatic vitamin a metabolism in NAFLD mice leading to vitamin a accumulation in hepatocytes. Cell Mol Gastroenterol Hepatol. 2021;11:309-325.e3.

Article  CAS  PubMed  Google Scholar 

Verma R, Krishna A. Effect of letrozole, a selective aromatase inhibitor, on testicular activities in adult mice: both in vivo and in vitro study. Gen Comp Endocrinol. 2017;241:57–68.

Article  CAS  PubMed  Google Scholar 

Poutanen M, Penning TM. Biology and clinical relevance of hydroxysteroid (17β) dehydrogenase enzymes. Mol Cell Endocrinol. 2019;489:1–2.

Article 

留言 (0)

沒有登入
gif