Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190

Bååth JA, Jensen K, Borch K, Westh P, Kari J (2022) Sabatier principle for rationalizing enzymatic hydrolysis of a synthetic polyester. JACS Au 2:1223–1231. https://doi.org/10.1021/jacsau.2c00204

Article  CAS  Google Scholar 

Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari MR, Then J, Schmidt J, Zimmermann W (2016) A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J 11:1082–1087. https://doi.org/10.1002/biot.201600008

Article  CAS  PubMed  Google Scholar 

Bell EL, Smithson R, Kilbride S, Foster J, Hardy FJ, Ramachandran S, Tedstone AS, High SJ, Garforth AA, Day PJR, Levy C, Shaver MP, Green AP (2022) Directed evolution of an efficient and thermostable PET polymerase. Nat Catal 5:673–681. https://doi.org/10.1038/s41929-022-00821-3

Article  CAS  Google Scholar 

Brizendine RK, Erickson E, Haugen SJ, Ramirez KJ, Miscall J, Salvachúa D, Piclford AR, Sobkowica MJ, McGeehan JE, Beckham GT (2022) Particle size reduction of poly(ethylene terephthalate) increases the rate of enzymatic depolymerization but does not increase the overall conversion extent. ACS Sustain Chem Eng 10:9131–9140. https://doi.org/10.1021/acssuschemeng.2c01961

Article  CAS  Google Scholar 

Castro AM, Carniel A, Stahelin D, Chinellato Junior LS, Angeli Honorato H, Menezes SMC (2019) High-fold improvement of assorted post-consumer poly(ethylene terephthalate) (PET) packages hydrolysis using Humicola insolens cutinase as a single biocatalyst. Process Biochem 81:85–91. https://doi.org/10.1016/j.procbio.2019.03.006

Article  CAS  Google Scholar 

Chen X-Q, Guo Z-Y, Wang L, Yan Z-F, Jin C-X, Huang Q-S, Kong D-M, Rao D-M, Wu J (2022) Directional-path modification strategy enhances PET hydrolase catalysis of plastic degradation. J Hazard Mater 433:128816. https://doi.org/10.1016/j.jhazmat.2022/12816

Article  CAS  PubMed  Google Scholar 

Cui Y, Chen Y, Liu X, Dong S, Tian Y, Qiao Y, Mitra R, Han J, Li C, Han X, Liu W, Chen Q, Wei W, Wang X, Du W, Tang S, Xiang H, Liu H, Liang Y, Houk KN, Wu B (2021) Computational redesign of PETase for plastic biodegradation under ambient condition by GRAPE strategy. ACS Catal 11:1340–1350. https://doi.org/10.1021/acscatal.0c05126

Article  CAS  Google Scholar 

Eberl A, Heumann S, Brueckner T, Araujo R, Cavaco-Paulo A, Kaufmann F, Kroutil W, Guebitz GM (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl)terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143:207–212. https://doi.org/10.1016/j.jbiotec.2009.07.008

Article  CAS  PubMed  Google Scholar 

Eiamthong B, Meesawat P, Wongsatit T, Jitdee J, Sangsri R, Patchsung M, Aphicho K, Suraritdechachai S, Huguenin-Dezot N, Tang S, Suginta W, Paosawatyanyong B, Babu MM, Chin JW, Palotiprapha D, Bhanthumnavin W, Uttamapinant C (2022) Discovery and genetic code expansion of a polyethylene terephthalate (PET) hydrolase from the human saliva metagenome for the degradation and bio-functionalization of PET. Angew Chem Int Ed. https://doi.org/10.1002/anie.202203061

Article  Google Scholar 

Emori M, Numoto N, Senga A, Bekker G-J, Kamiya N, Kobayashi Y, Ito N, Kawai F, Oda M (2020) Structural basis of mutants of PET-degrading enzyme from Saccharomonospora viridis AHK190 with high activity and thermal stability. Proteins 89:502–511. https://doi.org/10.1002/prot.26034

Article  CAS  PubMed  Google Scholar 

Furukawa M, Kawakami N, Oda K, Miyamoto K (2018) Acceleration of enzymatic degradation of poly(ethylene terephthalate) by surface coating with anionic surfactants. ChemSusChem 11:4018–4025. https://doi.org/10.1002/cssc.201802096

Article  CAS  PubMed  Google Scholar 

Furukawa M, Kawakami N, Tomizawa A, Miyamoto K (2019) Efficient degradation of poly(ethylene terephthalate) with Thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches. Sci Rep 9:16038. https://doi.org/10.1038/s41598-019-52379-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gamerith C, Zartl B, Pellis A, Guillamot F, Marty A, Herrero Acero E, Guebitz GM (2017) Enzymatic recovery of polyester building blocks from polymer blends. Process Biochem 59:58–64. https://doi.org/10.1016/j.procbio.2017.01.004

Article  CAS  Google Scholar 

Gercke D, Furtmann C, Tozakidis IEP, Jose J (2021) Highly crystalline post-consumer PET waste hydrolysis by surface displayed PETase using a bacterial whole-cell biocatalyst. ChemCatChem 13:3479–3489. https://doi.org/10.1002/cctc/202100443

Article  CAS  Google Scholar 

Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.170078

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hantani Y, Imamura H, Yamamoto T, Senga A, Yamagami Y, Kato M, Kawai F, Oda M (2018) Functional characterizations of polyethylene terephthalate-degrading cutinase-like enzyme Cut190 mutants using bis(2-hydroxyethyl)terephthalate as the model substrate. AIMS Biophys 5:290–302. https://doi.org/10.3934/biophy.2018.4.290

Article  CAS  Google Scholar 

Herrero Acero E, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I, Trotscha E, Wei R, Zimmermann W, Zinn M, Cavaco-Paulo A, Freddi G, Schwab H, Guebitz G (2011) Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules 44:4632–4640. https://doi.org/10.1021/ma200949p

Article  CAS  Google Scholar 

Inaba S, Kamiya N, Bekker G-J, Kawai F, Oda M (2019) Folding thermodynamics of PET-hydrolyzing enzyme Cut190 depending on Ca2+ concentration. J Term Anal Calorim 135:2655–2663. https://doi.org/10.1007/s10973-018-7447-9

Article  CAS  Google Scholar 

Kawabata T, Oda M, Kawai F (2017) Mutational analysis of cutinase-like enzyme, Cut190, based on the 3D docking structure with model compounds of polyethylene terephthalate. J Biosci Bioeng 124:28–35. https://doi.org/10.1016/j.jbiosc.2017.02.007

Article  CAS  PubMed  Google Scholar 

Kawai F (2021) Emerging strategies in polyethylene terephthalate hydrolase research for biorecycling. ChemSusChem 14:1–9. https://doi.org/10.1002/cssc.202100740

Article  CAS  Google Scholar 

Kawai F, Hu X (2009) Biochemistry of microbial polyvinyl alcohol degradation. Appl Microbiol Biotechnol 84:227–237. https://doi.org/10.1007/s00253-009-2113-6

Article  CAS  PubMed  Google Scholar 

Kawai F, Oda M, Tamashiro T, Waku T, Tanaka N, Yamamoto M, Mizushima H, Miyakawa T, Tanokura M (2014) A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 98:10053–10064. https://doi.org/10.1007/s00253-014-5860-y

Article  CAS  PubMed  Google Scholar 

Kawai F, Kawabata T, Oda M (2019) Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl Microbiol Biotechnol 103:4253–4268. https://doi.org/10.1007/s00253-019-09717-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawai F, Kawabata T, Oda M (2020) Current state and perspectives related to the PET hydrolases available for biorecycling. ACS Sustain Chem Eng 8:8894–8908. https://doi.org/10.1021/acssuschemeng.0c01638

Article  CAS  Google Scholar 

Lu H, Diaz DJ, Czarnecki NJ, Zhu C, Kim W, Schroff R, Acosta DJ, Alexander BR, Cole HO, Zhang Y, Lynd NA, Ellington AD, Alper HS (2022) Machine leaning-aided engineering of hydrolases for PET depolymerization. Nature 604:662–667. https://doi.org/10.1038/s41586-022-04599-z

Article  CAS  PubMed  Google Scholar 

Miyakawa T, Mizushima H, Ohtsuka J, Oda M, Kawai F, Tanokura M (2014) Structural basis for the Ca2+-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 99:4297–4307. https://doi.org/10.1007/s00253-014-6272-8

Article  CAS  PubMed  Google Scholar 

Müller R-J (2006) Biological degradation of synthetic polyesters-enzymes as potential catalysis for polyester recycling. Process Biochem 41:2124–2128. https://doi.org/10.1016/j.procbio.2006.05.018

Article  CAS  Google Scholar 

Müller R-J, Schrader H, Profe J, Dresler K, Deckwer W-D (2005) Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolysis using a hydrolase from T. fusca. Macromol Rapid Commun 26:1400–1405. https://doi.org/10.1002/marc.200500410

Article  CAS  Google Scholar 

Naidu KT, Rao DK, Prabhu NP (2020) Cryo vs thermo: duality of ethylene glycol on the stability of proteins. J Phys Chem B 124:10077–10088. https://doi.org/10.1021/acs.jpcb.0c06247

Article  CAS  PubMed  Google Scholar 

Numoto N, Kamiya N, Bekker G-J, Yamagami Y, Inaba S, Ishii K, Uchiyama S, Kawai F, Ito N, Oda M (2018) Structural dynamics of the PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190 in substrate-bound states elucidates the Ca2+-driven catalytic cycle. Biochemistry 57:5289–5300. https://doi.org/10.1021/acs.biochem.8b00624

Article  CAS  PubMed  Google Scholar 

Oda M, Yamagami Y, Inaba S, Oida I, Yamamoto M, Kitajima S, Kawai F (2018) Enzymatic hydrolysis of PET: functional roles of three Ca2+ ions bound to a cutinase-like enzyme, Cut190*, and its engineering for improved activity. Appl Microbiol Biotechnol 102:10067–10077. https://doi.org/10.1007/s00253-018-9374-x

Article  CAS  PubMed  Google Scholar 

Palm GJ, Reisky L, Böttcher D, Müller H, Michels EAP, Walczak MC, Berndt L, Weiss MS, Bornscheur UT, Weber G (2019) Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat Commun 10:1717. https://doi.org/10.1038/s41467-019-09326-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pellis A, Haenvall K, Pichler CM, Ghazaryan G, Breinbauer R, Guebitz GM (2016) Enzymatic hydrolysis of poly(ethylene furanoate). J Biotechnol 235:47–53. https://doi.org/10.1016/j.jbiotec.2016.02.006

Article  CAS  PubMed  Google Scholar 

Pfaff L, Gao J, Li Z, Jäcjerubg A, Weber G, Mican J, Chen Y, Dong W, Han X, Feiler CG, Ao Y-F, Badenhorst CPS, Bednar D, Palm G, Lammers M, Damborsky J, Strodel B, Liu W, Bornscheuer UT, Wei R (2022) Multiple substrate binding mode-guided engineering of a thermophilic PET hydrolase. ACS Catal 12:9790–9800. https://doi.org/10.1021/acscatal.2c02275

Article  CAS  PubMed 

留言 (0)

沒有登入
gif