Bone marrow mesenchymal stem cells regulate the dysfunction of NK cells via the T cell immunoglobulin and ITIM domain in patients with myelodysplastic syndromes

Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109:1536–42. https://doi.org/10.1002/cncr.22570.

Article  PubMed  Google Scholar 

Steensma DP, Tefferi A. The myelodysplastic syndrome(s): a perspective and review highlighting current controversies. Leuk Res. 2003;27:95–120. https://doi.org/10.1016/S0145-2126(02)00098-X.

Article  PubMed  Google Scholar 

Collin M. Haematopoietic and immune defects associated with GATA2 mutation. Pathology. 2018;50:S44. https://doi.org/10.1016/j.pathol.2017.12.104.

Article  Google Scholar 

Zhang W, Shao Z, Fu R, Wang H, Li L, Liu H. Down-regulation of TET2 in CD3+ and CD34+ cells of myelodysplastic syndromes and enhances CD34+ cells proliferation. Int J Clin Exper Pathol. 2015;8(9):10840.

CAS  Google Scholar 

Epperson DE, Nakamura R, Saunthararajah Y, Melenhorst J, Barrett AJ. Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process. Leuk Res. 2001;25:1075–83. https://doi.org/10.1016/S0145-2126(01)00083-2.

Article  CAS  PubMed  Google Scholar 

Wlodarski MW, O’Keefe C, Howe EC, Risitano AM, Rodriguez A, Warshawsky I, Loughran TP Jr, Maciejewski JP. Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell-receptor restriction in large granular lymphocyte leukemia. Blood. 2005;106:2769–80. https://doi.org/10.1182/blood-2004-10-4045.

Article  CAS  PubMed  Google Scholar 

Fozza C, Dore F, Isoni MA, Crobu V. The immune landscape of myelodysplastic syndromes. Crit Rev Oncol Hematol. 2016. https://doi.org/10.1016/j.critrevonc.2016.08.016.

Article  PubMed  Google Scholar 

Lambert C, Wu Y, Aanei C. Bone marrow immunity and myelodysplasia. Front Oncol. 2016;6:172. https://doi.org/10.3389/fonc.2016.00172.

Article  PubMed  PubMed Central  Google Scholar 

Greenberg PL, Young NS, Gattermann N. Myelodysplastic syndromes. Hematology. 2002;2002:136–61. https://doi.org/10.1182/asheducation-2002.1.136.

Article  Google Scholar 

Kerndrup G, Meyer K, Ellegaard J, Hokland P. Natural killer (NK)-cell activity and antibody-dependent cellular cytotoxicity (ADCC) in primary preleukemic syndrome. Leukemia research. 1984. https://doi.org/10.1016/0145-2126(84)90147-4.

Article  PubMed  Google Scholar 

Porzsolt F, Heimpel H. Impaired T-cell and NK-cell function in patients with preleukemia. Blut. 1982. https://doi.org/10.1007/BF00320191.

Article  PubMed  Google Scholar 

Anderson RW, Volsky DJ, Greenberg B, Knox SJ, Bechtold T, Kuszynski C, Harada S, Purtilo DT. Lymphocyte abnormalities in preleukemia–I. decreased NK activity, anomalous immunoregulatory cell subsets and deficient EBV receptors. Leukemia Res. 1983. https://doi.org/10.1016/0145-2126(83)90103-0.

Article  Google Scholar 

Lanier LL. NK cell recognition. Annual Rev Immunol. 2005;23(1):225–74.

Article  CAS  Google Scholar 

Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity. 1996;4:573–81. https://doi.org/10.1016/S1074-7613(00)70060-4.

Article  CAS  PubMed  Google Scholar 

Wagner AK, Kadri N, Snall J, Brodin P, Gilfillan S, Colonna M, Bernhardt G, Hoglund P, Karre K, Chambers BJ. Expression of CD226 is associated to but not required for NK cell education. Nat Commun. 2017;8:15627. https://doi.org/10.1038/ncomms15627.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borrego F, Kabat J, Kim D-K, Lieto L, Maasho K, Peña J, Solana R, Coligan JE. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol. 2002;38:637–60. https://doi.org/10.1016/S0161-5890(01)00107-9.

Article  CAS  PubMed  Google Scholar 

Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nature Immunol. 2018. https://doi.org/10.1038/s41590-018-0132-0.

Article  Google Scholar 

Manieri NA, Chiang EY, Grogan JL. TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol. 2017;38:20–8. https://doi.org/10.1016/j.it.2016.10.002.

Article  CAS  PubMed  Google Scholar 

Liu X-G, Hou M, Liu Y. TIGIT, a novel therapeutic target for tumor immunotherapy. Immunol Invest. 2017;46:172–82. https://doi.org/10.1080/08820139.2016.1237524.

Article  CAS  PubMed  Google Scholar 

Li M, Xia P, Du Y, Liu S, Huang G, Chen J, Zhang H, Hou N, Cheng X, Zhou L, et al. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-gamma production of natural killer cells via beta-arrestin 2-mediated negative signaling. J Biol Chem. 2014;289:17647–57. https://doi.org/10.1074/jbc.M114.572420.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Zhang H, Li M, Hu D, Li C, Ge B, Jin B, Fan Z. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ. 2013;20:456–64. https://doi.org/10.1038/cdd.2012.141.

Article  CAS  PubMed  Google Scholar 

Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nature Immunol. 2009;10:48–57. https://doi.org/10.1038/ni.1674.

Article  CAS  Google Scholar 

Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, Stern-Ginossar N. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proceed Nat Acad Sci. 2009. https://doi.org/10.1073/pnas.0903474106.

Article  Google Scholar 

Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A, Honda SI, Lanier LL, Shibuya A. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol. 2004. https://doi.org/10.1093/intimm/dxh059.

Article  PubMed  Google Scholar 

Huang JC, Basu SK, Zhao X, Chien S, Fang M, Oehler VG, Appelbaum FR, Becker PS. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J. 2015;5: e302. https://doi.org/10.1038/bcj.2015.17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, Tse HF, Fu QL, Lian Q. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7: e2062. https://doi.org/10.1038/cddis.2015.327.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107:1484–90. https://doi.org/10.1182/blood-2005-07-2775.

Article  CAS  PubMed  Google Scholar 

Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006. https://doi.org/10.1634/stemcells.2004-0359.

Article  PubMed  Google Scholar 

Warlick ED, Miller JS. Myelodysplastic syndromes: the role of the immune system in pathogenesis. Leuk Lymphoma. 2011;52:2045–9. https://doi.org/10.3109/10428194.2011.584002.

Article  CAS  PubMed  Google Scholar 

Yang L, Qian Y, Eksioglu E, Epling-Burnette PK, Wei S. The inflammatory microenvironment in MDS. Cell Mol Life Sci. 2015;72:1959–66. https://doi.org/10.1007/s00018-015-1846-x.

Article  CAS  PubMed  Google Scholar 

Sakisaka T, Takai Y. Biology and pathology of nectins and nectin-like molecules. Current Opin Cell Biol. 2004. https://doi.org/10.1016/j.ceb.2004.07.007.

Article  Google Scholar 

Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 2018;19:723–32. https://doi.org/10.1038/s41590-018-0132-0.

Article  CAS  PubMed  Google Scholar 

Xu F, Sunderland A, Zhou Y, Schulick RD, Edil BH, Zhu Y. Blockade of CD112R and TIGIT signaling sensitizes human natural killer cell functions. Cancer Immunol. 2017. https://doi.org/10.1007/s00262-017-2031-x.

Article  Google Scholar 

Xu SJ, Shao ZH, Fu R, Wang HQ, Liu H, Liu CY, Zhang W. Subtype and functional biomarker changes of NK cells in peripheral blood of patients with myelodysplastic syndrome. Zhongguo shi yan xue ye xue za zhi. 2017. https://doi.org/10.7534/j.issn.1009-2137.2017.03.036.

Article  PubMed  Google Scholar 

Iwase O, Aizawa S, Kuriyama Y, Yaguchi M, Nakano M, Toyama K. Analysis of bone marrow and peripheral blood immunoregulatory lymphocytes in patients with myelodysplastic syndrome. Ann Hematol. 1995;71:293–9. https://doi.org/10.1007/BF01697982.

Article  CAS  PubMed  Google Scholar 

Sanchez-Correa B, Valhondo I, Hassouneh F, Lopez-Sejas N, Pera A, Bergua JM, Arcos MJ, Bañas H, Casas-Avilés I, Durán E, et al. DNAM-1 and the TIGIT/PVRIG/TACTILE axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers. 2019;11:877. https://doi.org/10.3390/cancers11060877.

Article  CAS  PubMed Central  Google Scholar 

Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J. TIGIT, the next step towards successful combination immune checkpoint therapy in cancer. Front Immunol. 2021;12:699895–699895. https://doi.org/10.3389/fimmu.2021.699895.

Article  CAS 

留言 (0)

沒有登入
gif