Towards clinical translation of FLASH radiotherapy

Thariat, J., Hannoun-Levi, J.-M., Sun Myint, A., Vuong, T. & Gérard, J.-P. Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol. 10, 52–60 (2012).

PubMed  Google Scholar 

Coutard, H. Principles of X-ray therapy of malignant diseases. Lancet 224, 1–8 (1934).

Google Scholar 

Lo, S. S. et al. Stereotactic body radiation therapy: a novel treatment modality. Nat. Rev. Clin. Oncol. 7, 44–54 (2010).

PubMed  Google Scholar 

Dewey, D. L. & Boag, J. W. Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature 183, 1450–1451 (1959).

CAS  PubMed  Google Scholar 

Town, C. D. Radiobiology. Effect of high dose rates on survival of mammalian cells. Nature 215, 847–848 (1967).

CAS  PubMed  Google Scholar 

Berry, R. J., Hall, E. J., Forster, D. W., Storr, T. H. & Goodman, M. J. Survival of mammalian cells exposed to x rays at ultra-high dose-rates. Br. J. Radiol. 42, 102–107 (1969).

CAS  PubMed  Google Scholar 

Hornsey, S. & Bewley, D. K. Hypoxia in mouse intestine induced by electron irradiation at high dose-rates. Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 19, 479–483 (1971).

CAS  Google Scholar 

Field, S. B. & Bewley, D. K. Effects of dose-rate on the radiation response of rat skin. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 26, 259–267 (1974).

CAS  PubMed  Google Scholar 

Hendry, J. H., Moore, J. V., Hodgson, B. W. & Keene, J. P. The constant low oxygen concentration in all the target cells for mouse tail radionecrosis. Radiat. Res. 92, 172–181 (1982).

CAS  PubMed  Google Scholar 

Favaudon, V. et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 6, 245ra93 (2014).

PubMed  Google Scholar 

Farr, J. B., Parodi, K. & Carlson, D. J. FLASH: current status and the transition to clinical use. Med. Phys. 49, 1972–1973 (2022).

PubMed  Google Scholar 

Lin, B. et al. FLASH radiotherapy: history and future. Front. Oncol. 11, 644400 (2021).

PubMed  PubMed Central  Google Scholar 

Kacem, H., Almeida, A., Cherbuin, N. & Vozenin, M.-C. Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation. Int. J. Radiat. Biol. 98, 506–516 (2022).

CAS  PubMed  Google Scholar 

Borghini, A. et al. FLASH ultra-high dose rates in radiotherapy: preclinical and radiobiological evidence. Int. J. Radiat. Biol. 98, 127–135 (2022).

CAS  PubMed  Google Scholar 

Durante, M., Brauer-Krisch, E. & Hill, M. Faster and safer? FLASH ultra-high dose rate in radiotherapy. Br. J. Radiol. 91, 20170628 (2017).

PubMed  Google Scholar 

Vozenin, M. C., Hendry, J. H. & Limoli, C. L. Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken. Clin. Oncol. 31, 407–415 (2019).

Google Scholar 

Beddok, A. et al. A comprehensive analysis of the relationship between dose rate and biological effects in preclinical and clinical studies, from brachytherapy to flattening filter free radiation therapy and FLASH irradiation. Int. J. Radiat. Oncol. 113, 985–995 (2022).

Google Scholar 

Vozenin, M. C., Montay-Gruel, P., Limoli, C. & Germond, J. F. All Irradiations that are ultra-high dose rate may not be FLASH: the critical importance of beam parameter characterization and in vivo validation of the FLASH effect. Radiat. Res. 194, 571–572 (2020).

CAS  PubMed  Google Scholar 

Wilson, J. D., Hammond, E. M., Higgins, G. S. & Petersson, K. Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold? Front. Oncol. 9, 1563 (2020).

PubMed  PubMed Central  Google Scholar 

Schüler, E. et al. Ultra‐high dose rate electron beams and the FLASH effect: from preclinical evidence to a new radiotherapy paradigm. Med. Phys. 49, 2082–2095 (2022).

PubMed  Google Scholar 

Rothwell, B. C. et al. Determining the parameter space for effective oxygen depletion for FLASH radiation therapy. Phys. Med. Biol. 66, 055020 (2021).

PubMed Central  Google Scholar 

Bourhis, J. et al. Clinical translation of FLASH radiotherapy: why and how? Radiother. Oncol. 139, 11–17 (2019).

PubMed  Google Scholar 

Bourhis, J. et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. 139, 18–22 (2019).

PubMed  Google Scholar 

Gaide, O. et al. Comparison of ultra-high versus conventional dose rate radiotherapy in a patient with cutaneous lymphoma. Radiother. Oncol. 174, 87–91 (2022).

PubMed  Google Scholar 

Taylor, P. A., Moran, J. M., Jaffray, D. A. & Buchsbaum, J. C. A roadmap to clinical trials for FLASH. Med. Phys. 49, 4099–4108 (2022).

PubMed  Google Scholar 

Montay-Gruel, P. et al. Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clin. Cancer Res. 27, 775–784 (2021).

PubMed  Google Scholar 

MacKay, R. et al. FLASH radiotherapy: considerations for multibeam and hypofractionation dose delivery. Radiother. Oncol. 164, 122–127 (2021).

PubMed  Google Scholar 

Jaccard, M. et al. High dose-per-pulse electron beam dosimetry: usability and dose-rate independence of EBT3 gafchromic films. Med. Phys. 44, 725–735 (2017).

CAS  PubMed  Google Scholar 

Jorge, P. G. et al. Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiother. Oncol. 139, 34–39 (2019).

PubMed  Google Scholar 

Schüler, E. et al. Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator. Int. J. Radiat. Oncol. Biol. Phys. 97, 195–203 (2017).

PubMed  Google Scholar 

Lempart, M. et al. Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiother. Oncol. 139, 40–45 (2019).

CAS  PubMed  Google Scholar 

Rahman, M. et al. Electron FLASH delivery at treatment room isocenter for efficient reversible conversion of a clinical LINAC. Int. J. Radiat. Oncol. 110, 872–882 (2021).

Google Scholar 

Lansonneur, P. et al. Simulation and experimental validation of a prototype electron beam linear accelerator for preclinical studies. Phys. Med. 60, 50–57 (2019).

PubMed  Google Scholar 

Felici, G. et al. Transforming an IORT linac into a FLASH research machine: procedure and dosimetric characterization. Front. Phys. 8, 374 (2020).

Google Scholar 

Di Martino, F. et al. FLASH radiotherapy with electrons: issues related to the production, monitoring, and dosimetric characterization of the beam. Front. Phys. 8, 570697 (2020).

Google Scholar 

Moeckli, R. et al. Commissioning of an ultra‐high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols. Med. Phys. 48, 3134–3142 (2021).

CAS  PubMed  Google Scholar 

Jaccard, M. et al. High dose-per-pulse electron beam dosimetry: commissioning of the oriatron eRT6 prototype linear accelerator for preclinical use. Med. Phys. 45, 863–874 (2018).

CAS  PubMed  Google Scholar 

Whitmore, L., Mackay, R. I., van Herk, M., Jones, J. K. & Jones, R. M. Focused VHEE (very high energy electron) beams and dose delivery for radiotherapy applications. Sci. Rep. 11, 14013 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Sarti, A. et al. Deep seated tumour treatments with electrons of high energy delivered at FLASH rates: the example of prostate cancer. Front. Oncol. 11, 777852 (2021).

PubMed  PubMed Central  Google Scholar 

Ronga, M. G. et al. Back to the future: very high-energy electrons (VHEEs) and their potential application in radiation therapy. Cancers 13, 4942 (2021).

PubMed  PubMed Central  Google Scholar 

Hooker, S. M. Developments in laser-driven plasma accelerators. Nat. Photonics 7, 775–782 (2013).

CAS  Google Scholar 

Peralta, E. A. et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94 (2013).

CAS  PubMed  Google Scholar 

Montay-Gruel, P., Corde, S., Laissue, J. A. & Bazalova-Carter, M. FLASH radiotherapy with photon beams. Med. Phys. 49, 2055–2067 (2022).

CAS  PubMed  Google Scholar 

Montay-Gruel, P. et al. X-rays can trigger the FLASH effect: ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiother. Oncol. 129, 582–588 (2018).

PubMed  Google Scholar 

Smyth, L. M. L. et al. Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model. Sci. Rep. 8, 12044 (2018).

PubMed  PubMed Central  Google Scholar 

Eling, L. et al. Ultra high dose rate synchrotron microbeam radiation therapy. Preclinical evidence in view of a clinical transfer. Radiother. Oncol. 139, 56–61 (2019).

PubMed  Google Scholar 

Rezaee, M., Iordachita, I. & Wong, J. W. Ultrahigh dose-rate (FLASH) X-ray irradiator for pre-clinical laboratory research. Phys. Med. Biol. 66, 095006 (2021).

CAS  Google Scholar 

Gao, F. et al. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays. Radiother. Oncol. 166, 44–50 (2022).

CAS  PubMed  Google Scholar 

Maxim, P. G., Tantawi, S. G. & Loo, B. W. PHASER: a platform for clinical translation of FLASH cancer radiotherapy. Radiother. Oncol. 139, 28–33 (2019).

PubMed  Google Scholar 

Durante, M., Orecchia, R. & Loeffler, J. S. Charged-particle therapy in cancer: clinical uses and future perspectives. Nat. Rev. Clin. Oncol. 14, 483–495 (2017).

PubMed  Google Scholar 

Durante, M. & Paganetti, H. Nuclear physics in particle therapy: a review. Rep. Prog. Phys. 79, 096702 (2016).

PubMed  Google Scholar 

Diffenderfer

留言 (0)

沒有登入
gif