A feasibility study of different commercially available serum-free mediums to enhance lentivirus and adeno-associated virus production in HEK 293 suspension cells

Ali RR, Reichel MB, Thrasher AJ et al (1996) Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 5:591–594. https://doi.org/10.1093/HMG/5.5.591

Article  PubMed  CAS  Google Scholar 

Alton EWFW, Beekman JM, Boyd AC et al (2017) Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis. Thorax 72:137–147. https://doi.org/10.1136/THORAXJNL-2016-208406

Article  PubMed  Google Scholar 

Aurnhammer C, Haase M, Muether N et al (2012) Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum Gene Ther Methods 23:18–28. https://doi.org/10.1089/HGTB.2011.034

Article  PubMed  CAS  Google Scholar 

Ausubel LJ, Hall C, Sharma A et al (2012) Production of CGMP-grade lentiviral vectors. Bioprocess Int 10:32–43

PubMed  PubMed Central  CAS  Google Scholar 

Baldi L, Hacker DL, Meerschman C, Wurm FM (2012) Large-scale transfection of mammalian cells. Methods Mol Biol 801:13–26. https://doi.org/10.1007/978-1-61779-352-3_2

Article  PubMed  CAS  Google Scholar 

Blessing D, Vachey G, Pythoud C et al (2019) Scalable production of AAV vectors in orbitally shaken HEK293 cells. Mol Ther Methods Clin Dev 13:14–26. https://doi.org/10.1016/J.OMTM.2018.11.004

Article  PubMed  CAS  Google Scholar 

Brunner D, Frank J, Appl H et al (2010) Serum-free cell culture: the serum-free media interactive online database. Altex 27:53–62. https://doi.org/10.14573/altex.2010.1.53

Article  PubMed  Google Scholar 

Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Fischer MD (2021) Immune responses to retinal gene therapy using adeno-associated viral vectors - Implications for treatment success and safety. Prog Retin Eye Res. https://doi.org/10.1016/J.PRETEYERES.2020.100915

Article  PubMed  Google Scholar 

Bulcha JT, Wang Y, Ma H et al (2021) Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. https://doi.org/10.1038/S41392-021-00487-6

Article  PubMed  PubMed Central  Google Scholar 

Bundy M, Thompson K, Liu C et al (2020) Optimization of the Gibco™ CTS™ LV-MAX™ Lentiviral production system in stirred tank bioreactors. Cytotherapy 22:S206. https://doi.org/10.1016/J.JCYT.2020.04.087

Article  Google Scholar 

Cervera L, Fuenmayor J, González-Domínguez I et al (2015) Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures. Appl Microbiol Biotechnol 99:9935–9949. https://doi.org/10.1007/S00253-015-6842-4

Article  PubMed  CAS  Google Scholar 

Chahal PS, Schulze E, Tran R et al (2014) Production of adeno-associated virus (AAV) serotypes by transient transfection of HEK293 cell suspension cultures for gene delivery. J Virol Methods 196:163–173. https://doi.org/10.1016/J.JVIROMET.2013.10.038

Article  PubMed  CAS  Google Scholar 

Croyle MA, Cheng X, Wilson JM (2001) Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther 8:1281–1290. https://doi.org/10.1038/sj.gt.3301527

Article  PubMed  CAS  Google Scholar 

De Jesus M, Wurm FM (2011) Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. Eur J Pharm Biopharm 78:184–188. https://doi.org/10.1016/J.EJPB.2011.01.005

Article  PubMed  Google Scholar 

De Molinas LMilagrosB, Beer M, Hesse C et al (2014) Optimizing the transient transfection process of HEK-293 suspension cells for protein production by nucleotide ratio monitoring. Cytotechnology 66:493–514. https://doi.org/10.1007/s10616-013-9601-3

Article  CAS  Google Scholar 

Ferreira MV, Cabral ET, Coroadinha AS (2021) Progress and perspectives in the development of lentiviral vector producer cells. Biotechnol J. https://doi.org/10.1002/BIOT.202000017

Article  PubMed  Google Scholar 

Gallaher SD, Berk AJ (2013) A rapid Q-PCR titration protocol for adenovirus and helper-dependent adenovirus vectors that produces biologically relevant results. J Virol Methods 192:28–38. https://doi.org/10.1016/j.jviromet.2013.04.013

Article  PubMed  PubMed Central  CAS  Google Scholar 

Genzel Y, Reichl U (2007) Vaccine production program vaccine production program. In: Pörtner R (ed) Animal cell biotechnology, 2nd edn. Humana Press, pp 457–473

Chapter  Google Scholar 

Ghasemi N, Bandehpour M, Ranjbari J (2019) Optimization of key factors in serum free medium for production of human recombinant GM-CSF using response surface methodology. Iran J Pharm Res IJPR 18:146. https://doi.org/10.22037/IJPR.2020.112322.13681

Article  PubMed  CAS  Google Scholar 

Goradel NH, Alizadeh A, Hosseinzadeh S et al (2022) Oncolytic virotherapy as promising immunotherapy against cancer: mechanisms of resistance to oncolytic viruses. Future Oncol 18:245–259. https://doi.org/10.2217/FON-2021-0802

Article  PubMed  CAS  Google Scholar 

Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–72. https://doi.org/10.1099/0022-1317-36-1-59

Article  PubMed  CAS  Google Scholar 

Grein TA, Weidner T, Czermak P (2017) Concepts for the production of viruses and viral vectors in cell cultures. In: Gowder SJT (ed) New insights into cell culture technology. IntechOpen, London

Google Scholar 

Grieger JC, Soltys SM, Samulski RJ (2016) Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol Ther 24:287–297. https://doi.org/10.1038/MT.2015.187

Article  PubMed  CAS  Google Scholar 

Griffiths JB, Racher AJ (1994) Cultural and physiological factors affecting expression of recombinant proteins. Cytotechnology 15:3–9. https://doi.org/10.1007/BF00762374

Article  PubMed  CAS  Google Scholar 

Guan J-S, Chen K, Si Y et al (2022) Process improvement of adeno-associated virus production. Front Chem Eng 0:1. https://doi.org/10.3389/FCENG.2022.830421

Article  Google Scholar 

Haldankar R, Li D, Saremi Z et al (2006) Serum-free suspension large-scale transient transfection of CHO cells in WAVE bioreactors. Mol Biotechnol 34:191–199. https://doi.org/10.1385/MB:34:2:191

Article  PubMed  CAS  Google Scholar 

Hesse F, Ebel M, Konisch N, et al (2003) Comparison of a Production Process in a Membrane-Aerated Stirred Tank and up to 1000-L Airlift Bioreactors Using BHK-21 Cells and Chemically Defined Protein-Free Medium. Biotechnol Prog 19:833–843. https://doi.org/10.1021/BP0257630

Article  PubMed  CAS  Google Scholar 

Ho YK, Too HP (2019) Development of a laboratory scalable process for enhancing lentivirus production by transient transfection of HEK293 adherent cultures. Gene Ther 27:482–494. https://doi.org/10.1038/s41434-020-0152-x

Article  PubMed  CAS  Google Scholar 

Karolewski BA, Watson DJ, Parente MK, Wolfe JH (2004) Comparison of transfection conditions for a lentivirus vector produced in large volumes. Hum Gene Ther 14:1287–1296. https://doi.org/10.1089/104303403322319372

Article  CAS  Google Scholar 

Kissmann J, Ausar SF, Rudolph A et al (2008) Stabilization of measles virus for vaccine formulation. Hum Vaccin 4:350–359. https://doi.org/10.4161/HV.4.5.5863

Article  PubMed  Google Scholar 

Ku MW, Bourgine M, Authié P et al (2021) Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host Microbe 29:236–249e6. https://doi.org/10.1016/J.CHOM.2020.12.010

Article  PubMed  CAS  Google Scholar 

Kumar P, Nagarajan A, Uchil PD (2019) Calcium phosphate-mediated transfection of adherent cells or cells growing in suspension: variations on the basic method. Cold Spring Harb Protoc 2019:705–708. https://doi.org/10.1101/PDB.PROT095455

Article  Google Scholar 

Legmann R (2020) Transient transfection at large scale for clinical AAV9 vector manufacturing. Cytotherapy 22:S151. https://doi.org/10.1016/J.JCYT.2020.03.312

Article  Google Scholar 

Liu D, Zhu M, Zhang Y, Diao Y (2021) Crossing the blood-brain barrier with AAV vectors. Metab Brain Dis 36:45–52. https://doi.org/10.1007/S11011-020-00630-2

Article  PubMed  Google Scholar 

Longo PA, Kavran JM, Kim MS, Leahy DJ (2013) Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529:227. https://doi.org/10.1016/B978-0-12-418687-3.00018-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Marjanovič I, Kandušer M, Miklavčič D et al (2014) Comparison of flow cytometry, fluorescence microscopy and spectrofluorometry for analysis of gene electrotransfer efficiency. J Membr Biol 247:1259–1267. https://doi.org/10.1007/s00232-014-9714-4

Article  PubMed  CAS  Google Scholar 

Merten OW, Charrier S, Laroudie N et al (2010) Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo. Gene Ther Appl 22:343–356. https://doi.org/10.1089/HUM.2010.060

Article  Google Scholar 

Miki H, Takagi M (2015) Design of serum-free medium for suspension culture of CHO cells on the basis of general commercial media. Cytotechnology 67:689. https://doi.org/10.1007/S10616-014-9778-0

Article  PubMed  CAS  Google Scholar 

Mueller C, Ratner D, Zhong L et al (2012) Production and discovery of novel recombinant adeno-associated viral vectors. Curr Protoc Microbiol. https://doi.org/10.1002/9780471729259.mc14d01s

Article  PubMed  PubMed Cent

留言 (0)

沒有登入
gif