Vascular Considerations for Amyloid Immunotherapy

Hippius H, Neundorfer G. The discovery of Alzheimer’s disease. Dialogues Clin Neurosci. 2003;5(1):101–8.

Article  Google Scholar 

Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349(6311):704–6. https://doi.org/10.1038/349704a0.

Article  CAS  PubMed  Google Scholar 

Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5. https://doi.org/10.1126/science.1566067.

Article  CAS  PubMed  Google Scholar 

Selkoe DJ. Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol. 1994;53(5):438–47. https://doi.org/10.1097/00005072-199409000-00003.

Article  CAS  PubMed  Google Scholar 

Pike CJ, Overman MJ, Cotman CW. Amino-terminal deletions enhance aggregation of β-amyloid peptides in vitro. J Biol Chem. 1995;270(41):23895–8. https://doi.org/10.1074/jbc.270.41.23895.

Article  CAS  PubMed  Google Scholar 

Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994;13(1):45–53. https://doi.org/10.1016/0896-6273(94)90458-8.

Article  CAS  PubMed  Google Scholar 

Niwa K, Carlson GA, Iadecola C. Exogenous Aβ1–40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice. J Cereb Blood Flow Metab. 2000;20(12):1659–68. https://doi.org/10.1097/00004647-200012000-00005.

Article  CAS  PubMed  Google Scholar 

Gomis M, Sobrino TS, Ois A, MilláN MN, RodríGuez-Campello A, De La Ossa NPR, et al. Plasma β-amyloid 1–40 is associated with the diffuse small vessel disease subtype. Stroke. 2009;40(10):3197–201. https://doi.org/10.1161/strokeaha.109.559641.

Article  CAS  PubMed  Google Scholar 

Solomon B, Koppel R, Hanan E, Katzav T. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc Natl Acad Sci. 1996;93(1):452–5. https://doi.org/10.1073/pnas.93.1.452.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solomon B, Koppel R, Frankel D, Hanan-Aharon E. Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci U S A. 1997;94(8):4109–12. https://doi.org/10.1073/pnas.94.8.4109.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173–7. https://doi.org/10.1038/22124. This paper is the first article showing effective immunization procedures to clear Aβ plaques in mice.

Article  CAS  PubMed  Google Scholar 

Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature. 2000;408(6815):982–5. https://doi.org/10.1038/35050116.

Article  CAS  PubMed  Google Scholar 

Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, et al. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature. 2000;408(6815):979–82. https://doi.org/10.1038/35050110.

Article  CAS  PubMed  Google Scholar 

Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem. 2001;276(24):21562–70. https://doi.org/10.1074/jbc.M100710200.

Article  CAS  PubMed  Google Scholar 

Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6(8):916–9. https://doi.org/10.1038/78682. The authors show the first murine demonstration that peripheral immunization of anti-Aβ antibodies can cross the cerebrovasculature to mitigate Aβ plaque.

Article  CAS  PubMed  Google Scholar 

Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. https://doi.org/10.3389/fimmu.2014.00520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Taeye SW, Rispens T, Vidarsson G. The ligands for human IgG and their effector functions. Antibodies. 2019;8(2):30. https://doi.org/10.3390/antib8020030.

Article  CAS  PubMed Central  Google Scholar 

Bacskai BJ, Kajdasz ST, McLellan ME, Games D, Seubert P, Schenk D, et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J Neurosci. 2002;22(18):7873–8.

Article  CAS  Google Scholar 

Bard F, Barbour R, Cannon C, Carretto R, Fox M, Games D, et al. Epitope and isotype specificities of antibodies to β-amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci. 2003;100(4):2023–8. https://doi.org/10.1073/pnas.0436286100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lightle S, Aykent S, Lacher N, Mitaksov V, Wells K, Zobel J, et al. Mutations within a human IgG2 antibody form distinct and homogeneous disulfide isomers but do not affect Fc gamma receptor or C1q binding. Protein Sci. 2010;19(4):753–62. https://doi.org/10.1002/pro.352.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilcock DM, DiCarlo G, Henderson D, Jackson J, Clarke K, Ugen KE, et al. Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. J Neurosci. 2003;23(9):3745–51.

Article  CAS  Google Scholar 

Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D. Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis. 2004;15(1):11–20. https://doi.org/10.1016/j.nbd.2003.09.015.

Article  CAS  PubMed  Google Scholar 

DeWitt DA, Perry G, Cohen M, Doller C, Silver J. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol. 1998;149(2):329–40. https://doi.org/10.1006/exnr.1997.6738.

Article  CAS  PubMed  Google Scholar 

Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 2003;9(4):453–7. https://doi.org/10.1038/nm838.

Article  CAS  PubMed  Google Scholar 

DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2001;98(15):8850–5. https://doi.org/10.1073/pnas.151261398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science. 2002;295(5563):2264–7. https://doi.org/10.1126/science.1067568.

Article  CAS  PubMed  Google Scholar 

Pfeifer M, Boncristiano S, Bondolfi L, Stalder A, Deller T, Staufenbiel M, et al. Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science. 2002;298(5597):1379. https://doi.org/10.1126/science.1078259.

Article  CAS  PubMed  Google Scholar 

Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, et al. Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflammation. 2004;1(1):24. https://doi.org/10.1186/1742-2094-1-24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci. 2005;25(3):629–36. https://doi.org/10.1523/JNEUROSCI.4337-04.2005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jellinger KA. Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm. 2002;109(5–6):813–36. https://doi.org/10.1007/s007020200068.

Article  CAS  PubMed  Google Scholar 

Janota C, Lemere CA, Brito MA. Dissecting the contribution of vascular alterations and aging to Alzheimer’s disease. Mol Neurobiol. 2016;53(6):3793–811. https://doi.org/10.1007/s12035-015-9319-7.

Article  CAS  PubMed  Google Scholar 

Schenk D. Amyloid-β immunotherapy for Alzheimer’s disease: the end of the beginning. Nat Rev Neurosci. 2002;3(10):824–8. https://doi.org/10.1038/nrn938.

Article  CAS  PubMed  Google Scholar 

Buckwalter MS, Coleman BS, Buttini M, Barbour R, Schenk D, Games D, et al. Increased T cell recruitment to the CNS after amyloid beta1-42 immunization in Alzheimer’s mice overproducing transforming growth factor-beta1. J Neurosci. 2006;26(44):11437–41. https://doi.org/10.1523/jneurosci.2436-06.2006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrer I, Rovira MB, Guerra

留言 (0)

沒有登入
gif